BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 34554900)

  • 21. Rheology of starch dispersions at high temperatures.
    Ahuja A; Lee R; Latshaw A; Foster P
    J Texture Stud; 2020 Aug; 51(4):575-584. PubMed ID: 32086941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer.
    Sui J; Zhao P; Cheng Z; Zheng L; Zhang X
    Phys Fluids (1994); 2017 Feb; 29(2):023105. PubMed ID: 28344433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partial velocity slip effect on working magneto non-Newtonian nanofluids flow in solar collectors subject to change viscosity and thermal conductivity with temperature.
    Jamshed W; Eid MR; Aissa A; Mourad A; Nisar KS; Shahzad F; Saleel CA; Vijayakumar V
    PLoS One; 2021; 16(11):e0259881. PubMed ID: 34843499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling.
    Deplano V; Knapp Y; Bailly L; Bertrand E
    J Biomech; 2014 Apr; 47(6):1262-9. PubMed ID: 24612986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Convective Heat Transfer in Magneto-Hydrodynamic Carreau Fluid with Temperature Dependent Viscosity and Thermal Conductivity.
    Shah SAGA; Hassan A; Alsubaie N; Alhushaybari A; Alharbi FM; Galal AM; Burduhos-Nergis DP; Bejinariu C
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal stability and melt rheology of poly(p-dioxanone).
    Liu C; Andjelić S; Zhou J; Xu Y; Vailhe C; Vetrecin R
    J Mater Sci Mater Med; 2008 Dec; 19(12):3481-7. PubMed ID: 18597159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow Characteristics of Heat and Mass for Nanofluid under Different Operating Temperatures over Wedge and Plate.
    Rizwan M; Hassan M; Asjad MI; Tag-ElDin EM
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall.
    Patlazhan S; Vagner S
    Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mobility of power-law and Carreau fluids through fibrous media.
    Shahsavari S; McKinley GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063012. PubMed ID: 26764809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vortex-assisted electroosmotic mixing of Carreau fluid in a microchannel.
    Mehta SK; Mondal PK
    Electrophoresis; 2023 Nov; 44(21-22):1629-1636. PubMed ID: 36807917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the numerical simulation of stagnation point flow of non-Newtonian fluid (Carreau fluid) with Cattaneo-Christov heat flux.
    Ijaz Khan M; Nigar M; Hayat T; Alsaedi A
    Comput Methods Programs Biomed; 2020 Apr; 187():105221. PubMed ID: 31786453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shear-thinning-induced chaos in taylor-couette flow.
    Ashrafi N; Khayat RE
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1455-67. PubMed ID: 11046426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow.
    Fedosov DA; Karniadakis GE; Caswell B
    J Chem Phys; 2010 Apr; 132(14):144103. PubMed ID: 20405981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables.
    Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S
    J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis of thermophoresis of charged colloidal particles in non-Newtonian concentrated electrolyte solutions.
    Zhou Y; Deng X; Liang S; Zhao C; Yang C
    Electrophoresis; 2022 Nov; 43(21-22):2267-2275. PubMed ID: 35589398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophoresis of a rigid sphere in a Carreau fluid normal to a planar surface.
    Lee E; Chen CT; Hsu JP
    J Colloid Interface Sci; 2005 May; 285(2):857-64. PubMed ID: 15837505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.