These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 34555052)
1. Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning. Li S; Chen B; Chen H; Hua Z; Shao Y; Yin H; Wang J PLoS One; 2021; 16(9):e0257343. PubMed ID: 34555052 [TBL] [Abstract][Full Text] [Related]
2. Identification of gene biomarkers in patients with postmenopausal osteoporosis. Yang C; Ren J; Li B; Jin C; Ma C; Cheng C; Sun Y; Shi X Mol Med Rep; 2019 Feb; 19(2):1065-1073. PubMed ID: 30569177 [TBL] [Abstract][Full Text] [Related]
3. Machine learning and weighted gene co-expression network analysis identify a three-gene signature to diagnose rheumatoid arthritis. Wu YK; Liu CD; Liu C; Wu J; Xie ZG Front Immunol; 2024; 15():1387311. PubMed ID: 38711508 [TBL] [Abstract][Full Text] [Related]
4. Coronary artery disease associated specific modules and feature genes revealed by integrative methods of WGCNA, MetaDE and machine learning. Wang Y; Liu T; Liu Y; Chen J; Xin B; Wu M; Cui W Gene; 2019 Aug; 710():122-130. PubMed ID: 31075415 [TBL] [Abstract][Full Text] [Related]
5. Screening of key immune Huang Y; Wang A; Wang F; Xu Y; Zhang W; Shi F; Wang S Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Feb; 49(2):207-219. PubMed ID: 38755717 [TBL] [Abstract][Full Text] [Related]
6. Utilizing benchmarked dataset and gene regulatory network to investigate hub genes in postmenopausal osteoporosis. Wang XL; Liu YM; Zhang ZD; Wang SS; Du YB; Yin ZS J Cancer Res Ther; 2020; 16(4):867-873. PubMed ID: 32930132 [TBL] [Abstract][Full Text] [Related]
7. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. Hammad A; Elshaer M; Tang X Math Biosci Eng; 2021 Oct; 18(6):8997-9015. PubMed ID: 34814332 [TBL] [Abstract][Full Text] [Related]
8. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Bai J; Pu X; Zhang Y; Dai E Ren Fail; 2022 Dec; 44(1):966-986. PubMed ID: 35713363 [TBL] [Abstract][Full Text] [Related]
9. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods. Tuo Y; An N; Zhang M Mol Med Rep; 2018 Mar; 17(3):4281-4290. PubMed ID: 29328377 [TBL] [Abstract][Full Text] [Related]
10. Identification of TYR, TYRP1, DCT and LARP7 as related biomarkers and immune infiltration characteristics of vitiligo via comprehensive strategies. Zhang J; Yu R; Guo X; Zou Y; Chen S; Zhou K; Chen Y; Li Y; Gao S; Wu Y Bioengineered; 2021 Dec; 12(1):2214-2227. PubMed ID: 34107850 [TBL] [Abstract][Full Text] [Related]
11. Identification of shared gene signatures and pathways for diagnosing osteoporosis with sarcopenia through integrated bioinformatics analysis and machine learning. Zhou X; Zhao L; Zhang Z; Chen Y; Chen G; Miao J; Li X BMC Musculoskelet Disord; 2024 Jun; 25(1):435. PubMed ID: 38831425 [TBL] [Abstract][Full Text] [Related]
12. Identification of biomarkers associated with oxidative stress-related genes in postmenopausal osteoporosis. Liu D; Hu Z; Tang Z; Li P; Yuan W; Li F; Chen Q Cell Mol Biol (Noisy-le-grand); 2023 Jun; 69(6):186-192. PubMed ID: 37605572 [TBL] [Abstract][Full Text] [Related]
13. Monocytes affect bone mineral density in pre- and postmenopausal women through ribonucleoprotein complex biogenesis by integrative bioinformatics analysis. Xiao KW; Li JL; Zeng ZH; Liu ZB; Hou ZQ; Yan X; Cai L Sci Rep; 2019 Nov; 9(1):17290. PubMed ID: 31754224 [TBL] [Abstract][Full Text] [Related]
14. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Su Y; Yu G; Li D; Lu Y; Ren C; Xu Y; Yang Y; Zhang K; Ma T; Li Z Front Physiol; 2023; 14():1289976. PubMed ID: 38260098 [No Abstract] [Full Text] [Related]
15. An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia. Liu K; Fu Q; Liu Y; Wang C Biosci Rep; 2019 Sep; 39(9):. PubMed ID: 31416885 [TBL] [Abstract][Full Text] [Related]
16. Identification of potential biomarkers and immune-related pathways related to immune infiltration in patients with acute myocardial infarction. Lin Z; Xu H; Chen Y; Zhang X; Yang J Transpl Immunol; 2022 Oct; 74():101652. PubMed ID: 35764238 [TBL] [Abstract][Full Text] [Related]
17. Consensus gene modules related to levels of bone mineral density (BMD) among smokers and nonsmokers. Lin B; Pan Z Bioengineered; 2021 Dec; 12(2):10134-10146. PubMed ID: 34743649 [TBL] [Abstract][Full Text] [Related]
18. Systematical analysis of underlying markers associated with Marfan syndrome via integrated bioinformatics and machine learning strategies. Wang G; Liu C; Wu Q; Wang J; Tang X; Wu Z; Tang L; Zhou Y J Biomol Struct Dyn; 2024 Jul; 42(11):5713-5724. PubMed ID: 37449753 [TBL] [Abstract][Full Text] [Related]
19. The shared circulating diagnostic biomarkers and molecular mechanisms of systemic lupus erythematosus and inflammatory bowel disease. Sun HW; Zhang X; Shen CC Front Immunol; 2024; 15():1354348. PubMed ID: 38774864 [TBL] [Abstract][Full Text] [Related]
20. Exploration of effective biomarkers for venous thrombosis embolism in Behçet's disease based on comprehensive bioinformatics analysis. Liu C; Wang Y; Wu Z; Tang X; Wang G; Wang J Sci Rep; 2024 Jul; 14(1):15884. PubMed ID: 38987624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]