BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34555271)

  • 1. Interaction of constituents of MDT regimen for leprosy with Mycobacterium leprae HSP18: impact on its structure and function.
    Chakraborty A; Ghosh R; Biswas A
    FEBS J; 2022 Feb; 289(3):832-853. PubMed ID: 34555271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, stability and chaperone function of Mycobacterium leprae Heat Shock Protein 18 are differentially affected upon interaction with gold and silver nanoparticles.
    Chakraborty A; Biswas A
    Int J Biol Macromol; 2020 Jun; 152():250-260. PubMed ID: 32084461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of ATP with a small heat shock protein from Mycobacterium leprae: effect on its structure and function.
    Nandi SK; Chakraborty A; Panda AK; Ray SS; Kar RK; Bhunia A; Biswas A
    PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003661. PubMed ID: 25811190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A S52P mutation in the 'α-crystallin domain' of Mycobacterium leprae HSP18 reduces its oligomeric size and chaperone function.
    Nandi SK; Rehna EA; Panda AK; Shiburaj S; Dharmalingam K; Biswas A
    FEBS J; 2013 Dec; 280(23):5994-6009. PubMed ID: 24024660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug resistant-Mycobacterium leprae--results of mouse footpad studies from a laboratory in south India.
    Ebenezer GJ; Norman G; Joseph GA; Daniel S; Job CK
    Indian J Lepr; 2002; 74(4):301-12. PubMed ID: 12624978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidences for zinc (II) and copper (II) ion interactions with Mycobacterium leprae HSP18: Effect on its structure and chaperone function.
    Nandi SK; Chakraborty A; Panda AK; Kar RK; Bhunia A; Biswas A
    J Inorg Biochem; 2018 Nov; 188():62-75. PubMed ID: 30121399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M. leprae HSP18 suppresses copper (II) mediated ROS generation: Effect of redox stress on its structure and function.
    Nandi SK; Chakraborty A; Panda AK; Biswas A
    Int J Biol Macromol; 2020 Mar; 146():648-660. PubMed ID: 31883890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism and interactions of antileprosy drugs.
    George J
    Biochem Pharmacol; 2020 Jul; 177():113993. PubMed ID: 32339493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo interactions of drugs used in multidrug therapy in leprosy.
    Dhople AM; Lamoureux LC; Gardner GD
    Indian J Lepr; 1991; 63(2):166-79. PubMed ID: 1664440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.
    Degang Y; Akama T; Hara T; Tanigawa K; Ishido Y; Gidoh M; Makino M; Ishii N; Suzuki K
    PLoS Negl Trop Dis; 2012; 6(12):e1936. PubMed ID: 23236531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dapsone drug resistance in the MDT era.
    Roche PW; Neupane KD; Failbus SS; Butlin CR
    Int J Lepr Other Mycobact Dis; 2000 Sep; 68(3):323-5. PubMed ID: 11221097
    [No Abstract]   [Full Text] [Related]  

  • 12.
    Hungria EM; Bührer-Sékula S; Oliveira RM; Aderaldo LC; Pontes MAA; Cruz R; de Gonçalves HS; Penna MLF; Penna GO; Stefani MMA
    Front Immunol; 2018; 9():915. PubMed ID: 29867930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice.
    Davis GL; Ray NA; Lahiri R; Gillis TP; Krahenbuhl JL; Williams DL; Adams LB
    PLoS Negl Trop Dis; 2013; 7(8):e2404. PubMed ID: 24179562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of rifampicin resistance and comparison of dapsone resistance of M. leprae in pre- and post-MDT era.
    Gupta UD; Katoch K; Katoch VM
    Indian J Lepr; 2009; 81(3):131-4. PubMed ID: 20509341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative real-time PCR analysis of Mycobacterium leprae DNA and mRNA in human biopsy material from leprosy and reactional cases.
    Lini N; Shankernarayan NP; Dharmalingam K
    J Med Microbiol; 2009 Jun; 58(Pt 6):753-759. PubMed ID: 19429751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immunopharmacology of antileprosy agents.
    Anderson R
    Lepr Rev; 1983 Jun; 54(2):139-44. PubMed ID: 6350776
    [No Abstract]   [Full Text] [Related]  

  • 17. A Mycobacterium leprae isolate resistant to dapsone, rifampin, ofloxacin and sparfloxacin.
    Matsuoka M; Kashiwabara Y; Namisato M
    Int J Lepr Other Mycobact Dis; 2000 Dec; 68(4):452-5. PubMed ID: 11332288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the structure-function relationship of Mycobacterium leprae HSP18 under different UV radiations.
    Chakraborty A; Nandi SK; Panda AK; Mahapatra PP; Giri S; Biswas A
    Int J Biol Macromol; 2018 Nov; 119():604-616. PubMed ID: 30055280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular detection of multidrug-resistant Mycobacterium leprae from Indian leprosy patients.
    Lavania M; Singh I; Turankar RP; Ahuja M; Pathak V; Sengupta U; Das L; Kumar A; Darlong J; Nathan R; Maseey A
    J Glob Antimicrob Resist; 2018 Mar; 12():214-219. PubMed ID: 29097343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.
    Nandi SK; Panda AK; Chakraborty A; Sinha Ray S; Biswas A
    PLoS One; 2015; 10(6):e0129734. PubMed ID: 26098662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.