These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 34555403)
1. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Sohrabi H; Majidi MR; Arbabzadeh O; Khaaki P; Pourmohammad S; Khataee A; Orooji Y Environ Res; 2022 Mar; 204(Pt B):112082. PubMed ID: 34555403 [TBL] [Abstract][Full Text] [Related]
2. Emerging electrochemical sensing and biosensing approaches for detection of Fumonisins in food samples. Sohrabi H; Arbabzadeh O; Khaaki P; Majidi MR; Khataee A; Woo Joo S Crit Rev Food Sci Nutr; 2022; 62(31):8761-8776. PubMed ID: 34085894 [TBL] [Abstract][Full Text] [Related]
3. Detection Strategies of Zearalenone for Food Safety: A Review. Caglayan MO; Şahin S; Üstündağ Z Crit Rev Anal Chem; 2022; 52(2):294-313. PubMed ID: 32715728 [TBL] [Abstract][Full Text] [Related]
4. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Goud KY; Reddy KK; Satyanarayana M; Kummari S; Gobi KV Mikrochim Acta; 2019 Dec; 187(1):29. PubMed ID: 31813061 [TBL] [Abstract][Full Text] [Related]
5. Novel insights into versatile nanomaterials integrated bioreceptors toward zearalenone ultrasensitive discrimination. Li Q; Wang X; Wang X; Zheng L; Chen P; Zhang B Food Chem; 2023 Jun; 410():135435. PubMed ID: 36641913 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in electrochemical monitoring of zearalenone in diverse matrices. De Rycke E; Foubert A; Dubruel P; Bol'hakov OI; De Saeger S; Beloglazova N Food Chem; 2021 Aug; 353():129342. PubMed ID: 33714123 [TBL] [Abstract][Full Text] [Related]
7. Detection of zearalenone in an aptamer assay using attenuated internal reflection ellipsometry and it's cereal sample applications. Caglayan MO; Üstündağ Z Food Chem Toxicol; 2020 Feb; 136():111081. PubMed ID: 31883987 [TBL] [Abstract][Full Text] [Related]
8. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Goud KY; Kailasa SK; Kumar V; Tsang YF; Lee SE; Gobi KV; Kim KH Biosens Bioelectron; 2018 Dec; 121():205-222. PubMed ID: 30219721 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone. Ji X; Yu C; Wen Y; Chen J; Yu Y; Zhang C; Gao R; Mu X; He J Biosens Bioelectron; 2019 Mar; 129():139-146. PubMed ID: 30690178 [TBL] [Abstract][Full Text] [Related]
10. Nanomaterial-based biosensors for food toxin detection. Malhotra BD; Srivastava S; Ali MA; Singh C Appl Biochem Biotechnol; 2014 Oct; 174(3):880-96. PubMed ID: 24903961 [TBL] [Abstract][Full Text] [Related]
11. Development of Fe Chen R; Sun Y; Huo B; Mao Z; Wang X; Li S; Lu R; Li S; Liang J; Gao Z Anal Chim Acta; 2021 Oct; 1180():338888. PubMed ID: 34538331 [TBL] [Abstract][Full Text] [Related]
12. Patulin and Trichothecene: characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Sohrabi H; Arbabzadeh O; Khaaki P; Khataee A; Majidi MR; Orooji Y Crit Rev Food Sci Nutr; 2022; 62(20):5540-5568. PubMed ID: 33624529 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Mass Sensitive Micro-Array biosensors for their feasibility in multiplex detection of low molecular weight toxins using mycotoxins as model compounds. Nolan P; Auer S; Spehar A; Oplatowska-Stachowiak M; Campbell K Talanta; 2021 Jan; 222():121521. PubMed ID: 33167231 [TBL] [Abstract][Full Text] [Related]
14. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Zhai W; Wei D; Cao M; Wang Z; Wang M Food Chem; 2023 Dec; 429():136944. PubMed ID: 37487389 [TBL] [Abstract][Full Text] [Related]
15. A dual-colored persistent luminescence nanosensor for simultaneous and autofluorescence-free determination of aflatoxin B Jiang YY; Zhao X; Chen LJ; Yang C; Yin XB; Yan XP Talanta; 2021 Sep; 232():122395. PubMed ID: 34074391 [TBL] [Abstract][Full Text] [Related]
16. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B He D; Wu Z; Cui B; Jin Z; Xu E Mikrochim Acta; 2020 Apr; 187(4):254. PubMed ID: 32239300 [TBL] [Abstract][Full Text] [Related]
17. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R; Li S; Sun Y; Huo B; Xia Y; Qin Y; Li S; Shi B; He D; Liang J; Gao Z Mikrochim Acta; 2021 Jul; 188(8):281. PubMed ID: 34331147 [TBL] [Abstract][Full Text] [Related]
18. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. Gupta R; Raza N; Bhardwaj SK; Vikrant K; Kim KH; Bhardwaj N J Hazard Mater; 2021 Jan; 401():123379. PubMed ID: 33113714 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. Gong Z; Huang Y; Hu X; Zhang J; Chen Q; Chen H Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671974 [TBL] [Abstract][Full Text] [Related]
20. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Yadav N; Yadav SS; Chhillar AK; Rana JS Food Chem Toxicol; 2021 Jun; 152():112201. PubMed ID: 33862122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]