These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34555537)
21. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers. Park K; Lee J; Jang HJ; Richards BA; Kohl MM; Kwag J BMC Biol; 2020 Jan; 18(1):7. PubMed ID: 31937327 [TBL] [Abstract][Full Text] [Related]
22. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations. Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716 [TBL] [Abstract][Full Text] [Related]
23. Identification of potential aggregation hotspots on Aβ42 fibrils blocked by the anti-amyloid chaperone-like BRICHOS domain. Kumar R; Le Marchand T; Adam L; Bobrovs R; Chen G; Fridmanis J; Kronqvist N; Biverstål H; Jaudzems K; Johansson J; Pintacuda G; Abelein A Nat Commun; 2024 Feb; 15(1):965. PubMed ID: 38302480 [TBL] [Abstract][Full Text] [Related]
24. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. Traub RD; Whittington MA; Colling SB; Buzsáki G; Jefferys JG J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):471-84. PubMed ID: 8782110 [TBL] [Abstract][Full Text] [Related]
25. The chaperone domain BRICHOS prevents CNS toxicity of amyloid-β peptide in Drosophila melanogaster. Hermansson E; Schultz S; Crowther D; Linse S; Winblad B; Westermark G; Johansson J; Presto J Dis Model Mech; 2014 Jun; 7(6):659-65. PubMed ID: 24682783 [TBL] [Abstract][Full Text] [Related]
26. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses. Neske GT; Connors BW J Neurophysiol; 2016 Aug; 116(2):351-68. PubMed ID: 27121576 [TBL] [Abstract][Full Text] [Related]
27. The critical role of persistent sodium current in hippocampal gamma oscillations. Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457 [TBL] [Abstract][Full Text] [Related]
28. Modeling fast and slow gamma oscillations with interneurons of different subtype. Keeley S; Fenton AA; Rinzel J J Neurophysiol; 2017 Mar; 117(3):950-965. PubMed ID: 27927782 [TBL] [Abstract][Full Text] [Related]
29. Histamine H3 receptor activation decreases kainate-induced hippocampal gamma oscillations in vitro by action potential desynchronization in pyramidal neurons. Andersson R; Lindskog M; Fisahn A J Physiol; 2010 Apr; 588(Pt 8):1241-9. PubMed ID: 20156850 [TBL] [Abstract][Full Text] [Related]
30. The BRICHOS domain, amyloid fibril formation, and their relationship. Knight SD; Presto J; Linse S; Johansson J Biochemistry; 2013 Oct; 52(43):7523-31. PubMed ID: 24099305 [TBL] [Abstract][Full Text] [Related]
31. Opposite effects of low and high doses of Abeta42 on electrical network and neuronal excitability in the rat prefrontal cortex. Wang Y; Zhang G; Zhou H; Barakat A; Querfurth H PLoS One; 2009 Dec; 4(12):e8366. PubMed ID: 20027222 [TBL] [Abstract][Full Text] [Related]
32. Cholinergic modulation of neuronal excitability and recurrent excitation-inhibition in prefrontal cortex circuits: implications for gamma oscillations. Pafundo DE; Miyamae T; Lewis DA; Gonzalez-Burgos G J Physiol; 2013 Oct; 591(19):4725-48. PubMed ID: 23818693 [TBL] [Abstract][Full Text] [Related]
33. Expression of the human molecular chaperone domain Bri2 BRICHOS on a gram per liter scale with an E. coli fed-batch culture. Schmuck B; Chen G; Pelcman J; Kronqvist N; Rising A; Johansson J Microb Cell Fact; 2021 Jul; 20(1):150. PubMed ID: 34330289 [TBL] [Abstract][Full Text] [Related]
34. Ablation of p75 Andrade-Talavera Y; Balleza-Tapia H; Dolz-Gaitón P; Chen G; Johansson J; Fisahn A Transl Psychiatry; 2021 Apr; 11(1):212. PubMed ID: 33837176 [TBL] [Abstract][Full Text] [Related]
35. Cortical oscillatory dynamics and benzodiazepine-site modulation of tonic inhibition in fast spiking interneurons. Prokic EJ; Weston C; Yamawaki N; Hall SD; Jones RS; Stanford IM; Ladds G; Woodhall GL Neuropharmacology; 2015 Aug; 95():192-205. PubMed ID: 25797493 [TBL] [Abstract][Full Text] [Related]
36. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. Craig MT; McBain CJ J Neurosci; 2015 Feb; 35(8):3616-24. PubMed ID: 25716860 [TBL] [Abstract][Full Text] [Related]
37. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor. Andersson R; Galter D; Papadia D; Fisahn A Neuropharmacology; 2017 May; 118():13-25. PubMed ID: 28274820 [TBL] [Abstract][Full Text] [Related]
39. Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. Cunningham MO; Davies CH; Buhl EH; Kopell N; Whittington MA J Neurosci; 2003 Oct; 23(30):9761-9. PubMed ID: 14586003 [TBL] [Abstract][Full Text] [Related]
40. The synthesis and characterization of Bri2 BRICHOS coated magnetic particles and their application to protein fishing: Identification of novel binding proteins. Tigro H; Kronqvist N; Abelein A; Galan-Acosta L; Chen G; Landreh M; Lyashkov A; Aon MA; Ferrucci L; Shimmo R; Johansson J; Moaddel R J Pharm Biomed Anal; 2021 May; 198():113996. PubMed ID: 33690096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]