BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34555581)

  • 1. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria.
    Ju W; Duan C; Liu L; Jin X; Bravo-Ruiseco G; Mei Y; Fang L
    Chemosphere; 2022 Jan; 287(Pt 3):132288. PubMed ID: 34555581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils.
    Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L
    Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process.
    Beiyuan J; Fang L; Chen H; Li M; Liu D; Wang Y
    Environ Pollut; 2021 Jan; 268(Pt A):115719. PubMed ID: 33007598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils.
    Komárek M; Vanek A; Mrnka L; Sudová R; Száková J; Tejnecký V; Chrastný V
    Environ Pollut; 2010 Jul; 158(7):2428-38. PubMed ID: 20452106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of amendments for the immobilization of Cu in soils containing EDDS leachates.
    Yang L; Jiang L; Wang G; Chen Y; Shen Z; Luo C
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16525-34. PubMed ID: 26077318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insight into the interactions of EDDS with copper in the rhizosphere of polluted soils.
    Zhao YP; Cui JL; Chan TS; Chen YH; Li XD
    Environ Pollut; 2020 Dec; 267():115453. PubMed ID: 33254714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal leaching along soil profiles after the EDDS application--a field study.
    Wang A; Luo C; Yang R; Chen Y; Shen Z; Li X
    Environ Pollut; 2012 May; 164():204-10. PubMed ID: 22366349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
    Attinti R; Barrett KR; Datta R; Sarkar D
    Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds.
    Luo C; Shen Z; Lou L; Li X
    Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal partitioning in plant-substrate-water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun.
    Vamerali T; Bandiera M; Lucchini P; Mosca G
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2434-46. PubMed ID: 24859698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils.
    Fang L; Wang M; Cai L; Cang L
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14627-14636. PubMed ID: 28452034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of EDDS Application on Soil Cu/Cd Availability and Uptake/transport by Castor].
    Liu WY; Wu G; Hu HQ
    Huan Jing Ke Xue; 2024 Mar; 45(3):1803-1811. PubMed ID: 38471891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock.
    Wang X; Fernandes de Souza M; Mench MJ; Li H; Ok YS; Tack FMG; Meers E
    Environ Pollut; 2022 Feb; 294():118627. PubMed ID: 34871647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil.
    Lingua G; Todeschini V; Grimaldi M; Baldantoni D; Proto A; Cicatelli A; Biondi S; Torrigiani P; Castiglione S
    J Environ Manage; 2014 Jan; 132():9-15. PubMed ID: 24252633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn phytoextraction and recycling of alfalfa biomass as potential Zn-biofortified feed crop.
    Wang X; Fernandes de Souza M; Li H; Tack FMG; Ok YS; Meers E
    Sci Total Environ; 2021 Mar; 760():143424. PubMed ID: 33223175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm.
    Sidhu GPS; Bali AS; Singh HP; Batish DR; Kohli RK
    Chemosphere; 2018 Aug; 205():234-243. PubMed ID: 29702343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.