BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34555581)

  • 21. Effects of [S,S]-ethylenediaminedisuccinic acid and nitrilotriacetic acid on the efficiency of Pb phytostabilization by Athyrium wardii (Hook.) grown in Pb-contaminated soils.
    Zhao L; Li T; Yu H; Zhang X; Zheng Z
    J Environ Manage; 2016 Nov; 182():94-100. PubMed ID: 27454100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure.
    Yang L; Wang G; Cheng Z; Liu Y; Shen Z; Luo C
    J Hazard Mater; 2013 Nov; 262():561-70. PubMed ID: 24095996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil.
    Luo C; Wang S; Wang Y; Yang R; Zhang G; Shen Z
    J Hazard Mater; 2015 Apr; 286():379-85. PubMed ID: 25658198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation and effects of EDDS and NTA on Zn in soil solutions during phytoextraction by alfalfa in soils with three Zn levels.
    Wang X; Fernandes de Souza M; Li H; Qiu J; Ok YS; Meers E
    Chemosphere; 2022 Apr; 292():133519. PubMed ID: 34995634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
    Tandy S; Schulin R; Nowack B
    Chemosphere; 2006 Mar; 62(9):1454-63. PubMed ID: 16083944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remediation of Cu-contaminated soil using chelant and EAOP.
    Pociecha M; Sircelj H; Lestan D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Sep; 44(11):1136-43. PubMed ID: 19847704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.
    Tandy S; Ammann A; Schulin R; Nowack B
    Environ Pollut; 2006 Jul; 142(2):191-9. PubMed ID: 16338042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process.
    Luo CL; Shen ZG; Li XD
    Int J Phytoremediation; 2007; 9(3):181-96. PubMed ID: 18246767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.
    Beiyuan J; Tsang DCW; Ok YS; Zhang W; Yang X; Baek K; Li XD
    Chemosphere; 2016 Sep; 159():426-432. PubMed ID: 27337434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of phytoextraction by Taiwanese chenopod and Napier grass by soapnut saponin and EDDS additions.
    Ko CH; Yang BY; Chang FC
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34311-34320. PubMed ID: 30796668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.
    Lu Y; Luo D; Liu L; Tan Z; Lai A; Liu G; Li J; Long J; Huang X; Chen Y
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24409-24418. PubMed ID: 28895025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Residual effects of EDDS leachates on plants during EDDS-assisted phytoremediation of copper contaminated soil.
    Yang L; Luo C; Liu Y; Quan L; Chen Y; Shen Z
    Sci Total Environ; 2013 Feb; 444():263-70. PubMed ID: 23274245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of different ethylenediamine-N,N'-disuccinic acid-enhanced washing configurations for remediation of a Cu-contaminated soil: process kinetics and efficiency comparison between single-stage and multi-stage configurations.
    Ferraro A; Fabbricino M; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21960-21972. PubMed ID: 28782086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS.
    Hauser L; Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2005 Sep; 39(17):6819-24. PubMed ID: 16190244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of S,S-ethylenediamine disuccinic acid on the phytoextraction efficiency of Solanum nigrum L. and soil quality in Cd-contaminated alkaline wheat soil.
    Wang Y; Xu Y; Qin X; Zhao L; Huang Q; Liang X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42959-42974. PubMed ID: 33830419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous enhanced removal of Cu, PCBs, and PBDEs by corn from e-waste-contaminated soil using the biodegradable chelant EDDS.
    Wang S; Wang Y; Lei W; Sun Y; Wang Y; Luo C; Zhang G
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):18203-10. PubMed ID: 26178838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of nitrogen forms and application rates on the phytoextraction of copper by castor bean (Ricinus communis L.).
    Zhou X; Huang G; Liang D; Liu Y; Yao S; Ali U; Hu H
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):647-656. PubMed ID: 31808081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.