These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34555664)

  • 1. Pinning multisynchronization of delayed fractional-order memristor-based neural networks with nonlinear coupling and almost-periodic perturbations.
    Peng L; Li X; Bi D; Xie X; Xie Y
    Neural Netw; 2021 Dec; 144():372-383. PubMed ID: 34555664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistability and fixed-time multisynchronization of switched neural networks with state-dependent switching rules.
    Ou S; Guo Z; Wen S; Huang T
    Neural Netw; 2024 Dec; 180():106713. PubMed ID: 39265482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical and static multisynchronization analysis for coupled multistable memristive neural networks with hybrid control.
    Lv X; Cao J; Rutkowski L
    Neural Netw; 2021 Nov; 143():515-524. PubMed ID: 34284298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impulsive Multisynchronization of Coupled Multistable Neural Networks With Time-Varying Delay.
    Wang YW; Yang W; Xiao JW; Zeng ZG
    IEEE Trans Neural Netw Learn Syst; 2017 Jul; 28(7):1560-1571. PubMed ID: 27071198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical and Static Multisynchronization of Coupled Multistable Neural Networks via Impulsive Control.
    Lv X; Li X; Cao J; Perc M
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6062-6072. PubMed ID: 29993915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexistence and local stability of multiple equilibrium points for fractional-order state-dependent switched competitive neural networks with time-varying delays.
    Wu Z; Nie X; Cao B
    Neural Netw; 2023 Mar; 160():132-147. PubMed ID: 36640489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact coexistence and locally asymptotic stability of multiple equilibria for fractional-order delayed Hopfield neural networks with Gaussian activation function.
    Nie X; Liu P; Liang J; Cao J
    Neural Netw; 2021 Oct; 142():690-700. PubMed ID: 34403909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.
    Velmurugan G; Rakkiyappan R; Cao J
    Neural Netw; 2016 Jan; 73():36-46. PubMed ID: 26547242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and synchronization of memristor-based fractional-order delayed neural networks.
    Chen L; Wu R; Cao J; Liu JB
    Neural Netw; 2015 Nov; 71():37-44. PubMed ID: 26282374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistability of delayed fractional-order competitive neural networks.
    Zhang F; Huang T; Wu Q; Zeng Z
    Neural Netw; 2021 Aug; 140():325-335. PubMed ID: 33895556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions.
    Liu P; Nie X; Liang J; Cao J
    Neural Netw; 2018 Dec; 108():452-465. PubMed ID: 30312961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projective synchronization of fractional-order memristor-based neural networks.
    Bao HB; Cao JD
    Neural Netw; 2015 Mar; 63():1-9. PubMed ID: 25463390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge-Based Fractional-Order Adaptive Strategies for Synchronization of Fractional-Order Coupled Networks With Reaction-Diffusion Terms.
    Lv Y; Hu C; Yu J; Jiang H; Huang T
    IEEE Trans Cybern; 2020 Apr; 50(4):1582-1594. PubMed ID: 30507521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Stabilization of Fractional-Order Memristor-Based Neural Networks With Time Delay.
    Jia J; Huang X; Li Y; Cao J; Alsaedi A
    IEEE Trans Neural Netw Learn Syst; 2020 Mar; 31(3):997-1009. PubMed ID: 31170083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses.
    Zhang W; Li C; Huang T; He X
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3308-13. PubMed ID: 26054076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pinning bipartite synchronization for coupled reaction-diffusion neural networks with antagonistic interactions and switching topologies.
    Miao B; Li X; Lou J; Lu J
    Neural Netw; 2021 Sep; 141():174-183. PubMed ID: 33906083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-time cluster synchronization in complex-variable networks with fractional-order and nonlinear coupling.
    Yang S; Hu C; Yu J; Jiang H
    Neural Netw; 2021 Mar; 135():212-224. PubMed ID: 33421899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistability and Stabilization of Fractional-Order Competitive Neural Networks With Unbounded Time-Varying Delays.
    Zhang F; Zeng Z
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4515-4526. PubMed ID: 33630741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistability of Fractional-Order Neural Networks With Unbounded Time-Varying Delays.
    Zhang F; Zeng Z
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):177-187. PubMed ID: 32203030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pth moment exponential stochastic synchronization of coupled memristor-based neural networks with mixed delays via delayed impulsive control.
    Yang X; Cao J; Qiu J
    Neural Netw; 2015 May; 65():80-91. PubMed ID: 25703512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.