These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34555712)

  • 1. Spatio-temporal modeling for confirmed cases of lyme disease in Virginia.
    Neupane N; Goldbloom-Helzner A; Arab A
    Ticks Tick Borne Dis; 2021 Nov; 12(6):101822. PubMed ID: 34555712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros.
    Arab A
    Int J Environ Res Public Health; 2015 Aug; 12(9):10536-48. PubMed ID: 26343696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Correlates of Lyme Disease Emergence in Southwest Virginia, 2005-2014.
    Lantos PM; Tsao J; Janko M; Arab A; von Fricken ME; Auwaerter PG; Nigrovic LE; Fowler V; Ruffin F; Gaines D; Broyhill J; Swenson J
    J Med Entomol; 2021 Jul; 58(4):1680-1685. PubMed ID: 33825903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal emergence pattern of Lyme disease in Virginia.
    Li J; Kolivras KN; Hong Y; Duan Y; Seukep SE; Prisley SP; Campbell JB; Gaines DN
    Am J Trop Med Hyg; 2014 Dec; 91(6):1166-72. PubMed ID: 25331806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population genetic structure of the Lyme disease vector Ixodes scapularis at an apparent spatial expansion front.
    Kelly RR; Gaines D; Gilliam WF; Brinkerhoff RJ
    Infect Genet Evol; 2014 Oct; 27():543-50. PubMed ID: 24882702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian spatio-temporal joint disease mapping of Covid-19 cases and deaths in local authorities of England.
    Sahu SK; Böhning D
    Spat Stat; 2022 Jun; 49():100519. PubMed ID: 33996424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Examination of the Demographic and Environmental Variables Correlated with Lyme Disease Emergence in Virginia.
    Seukep SE; Kolivras KN; Hong Y; Li J; Prisley SP; Campbell JB; Gaines DN; Dymond RL
    Ecohealth; 2015 Dec; 12(4):634-44. PubMed ID: 26163019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of predictive capability of Bayesian spatio-temporal models for Covid-19 spread.
    Lawson AB
    BMC Med Res Methodol; 2023 Aug; 23(1):182. PubMed ID: 37568119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using exploratory data analysis to identify and predict patterns of human Lyme disease case clustering within a multistate region, 2010-2014.
    Hendricks B; Mark-Carew M
    Spat Spatiotemporal Epidemiol; 2017 Feb; 20():35-43. PubMed ID: 28137676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current and Future Spatiotemporal Patterns of Lyme Disease Reporting in the Northeastern United States.
    Bisanzio D; Fernández MP; Martello E; Reithinger R; Diuk-Wasser MA
    JAMA Netw Open; 2020 Mar; 3(3):e200319. PubMed ID: 32125426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-inflated spatio-temporal models for disease mapping.
    Torabi M
    Biom J; 2017 May; 59(3):430-444. PubMed ID: 28187237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk Assessment and Mapping of Hand, Foot, and Mouth Disease at the County Level in Mainland China Using Spatiotemporal Zero-Inflated Bayesian Hierarchical Models.
    Song C; He Y; Bo Y; Wang J; Ren Z; Yang H
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30002344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis.
    Ogden NH; Radojevic M; Wu X; Duvvuri VR; Leighton PA; Wu J
    Environ Health Perspect; 2014 Jun; 122(6):631-8. PubMed ID: 24627295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the spatio-temporal variation of hepatitis A in Korea using a Bayesian model.
    Jeong J; Kim M; Choi J
    Front Public Health; 2022; 10():1085077. PubMed ID: 36743156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian zero-inflated spatio-temporal modelling of scrub typhus data in Korea, 2010-2014.
    Kang D; Choi J
    Geospat Health; 2018 Nov; 13(2):. PubMed ID: 30451461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial modeling of human risk of exposure to vector-borne pathogens based on epidemiological versus arthropod vector data.
    Eisen RJ; Eisen L
    J Med Entomol; 2008 Mar; 45(2):181-92. PubMed ID: 18402133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial correlated incidence modeling with zero inflation.
    Wang F; Li H; Wang H; Li Y
    Biom J; 2023 Apr; 65(4):e2200090. PubMed ID: 36732909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian Monte Carlo approach for predicting the spread of infectious diseases.
    Stojanović O; Leugering J; Pipa G; Ghozzi S; Ullrich A
    PLoS One; 2019; 14(12):e0225838. PubMed ID: 31851680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemiology of Lyme disease in Virginia.
    Heimberger T; Jenkins S; Russell H; Duma R
    Am J Med Sci; 1990 Nov; 300(5):283-7. PubMed ID: 2240015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.