These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34555902)

  • 61. Ion Transport in Polymer Electrolytes: Building New Bridges between Experiment and Molecular Simulation.
    Shao Y; Gudla H; Mindemark J; Brandell D; Zhang C
    Acc Chem Res; 2024 Apr; 57(8):1123-1134. PubMed ID: 38569004
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes.
    Bamford JT; Jones SD; Schauser NS; Pedretti BJ; Gordon LW; Lynd NA; Clément RJ; Segalman RA
    ACS Macro Lett; 2024 May; 13(5):638-643. PubMed ID: 38709178
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fluorinated Linkers Enable High-Voltage Pyrrolidinium-based Dicationic Ionic Liquid Electrolytes.
    Katcharava Z; Tirkalaee F; Orlamünde T; Kinkelin SJ; Busse K; Beiner M; Marinow A; Binder WH
    Chemistry; 2024 Jul; ():e202402004. PubMed ID: 38958607
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New Diglyme-based Gel Polymer Electrolytes for Na-based Energy Storage Devices.
    Babu B; Enke M; Prykhodska S; Lex-Balducci A; Schubert US; Balducci A
    ChemSusChem; 2021 Nov; 14(21):4836-4845. PubMed ID: 34473902
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Self-Assembly of Ultrathin, Ultrastrong Layered Membranes by Protic Solvent Penetration.
    Li C; Zhang M; Li P; Ren HR; Wu X; Piao Z; Xiao X; Zhang M; Liang X; Wu X; Chen B; Li H; Han Z; Liu J; Qiu L; Zhou G; Cheng HM
    J Am Chem Soc; 2024 Feb; 146(5):3553-3563. PubMed ID: 38285529
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bimetallic Anionic Organic Frameworks with Solid-State Cation Conduction for Charge Storage Applications.
    Zhang Y; Wang J; Apostol P; Rambabu D; Eddine Lakraychi A; Guo X; Zhang X; Lin X; Pal S; Rao Bakuru V; Chen X; Vlad A
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310033. PubMed ID: 37651171
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-Performance Electrochemical Actuator under an Ultralow Driving Voltage with a Mixed Electronic-Ionic Conductive Metal-Organic Framework.
    Li Y; Yu P; Ma W; Mao L
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56158-56166. PubMed ID: 37976422
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Xylose- and Nucleoside-Based Polymers via Thiol-ene Polymerization toward Sugar-Derived Solid Polymer Electrolytes.
    Oshinowo M; Piccini M; Kociok-Köhn G; Marken F; Buchard A
    ACS Appl Polym Mater; 2024 Feb; 6(3):1622-1632. PubMed ID: 38357438
    [TBL] [Abstract][Full Text] [Related]  

  • 69. From Molecular Simulations to Experiments: The Recent Development of Room Temperature Ionic Liquid-Based Electrolytes in Electric Double-Layer Capacitors.
    Zhang K; Wei C; Zheng M; Huang J; Zhou G
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542883
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries.
    Barbosa JC; Gonçalves R; Costa CM; Lanceros-Méndez S
    ACS Omega; 2022 May; 7(17):14457-14464. PubMed ID: 35572743
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanisms of the Accelerated Li
    Duan S; Qian L; Zheng Y; Zhu Y; Liu X; Dong L; Yan W; Zhang J
    Adv Mater; 2024 Apr; ():e2314120. PubMed ID: 38578406
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A mini review of current studies on metal-organic frameworks-incorporated composite solid polymer electrolytes in all-solid-state lithium batteries.
    Le PA; Nguyen NT; Nguyen PL; Phung TVB; Do CD
    Heliyon; 2023 Sep; 9(9):e19746. PubMed ID: 37809844
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport.
    Yao M; Yu T; Ruan Q; Chen Q; Zhang H; Zhang S
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):47163-47173. PubMed ID: 34555902
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A 3D Cross-Linked Metal-Organic Framework (MOF)-Derived Polymer Electrolyte for Dendrite-Free Solid-State Lithium-Ion Batteries.
    Zhou J; Wang X; Fu J; Chen L; Wei X; Jia R; Shi L
    Small; 2024 May; 20(18):e2309317. PubMed ID: 38095442
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thiol-Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium-Metal Batteries.
    Wang H; Wang Q; Cao X; He Y; Wu K; Yang J; Zhou H; Liu W; Sun X
    Adv Mater; 2020 Sep; 32(37):e2001259. PubMed ID: 32734684
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries.
    Wang Z; Shen L; Deng S; Cui P; Yao X
    Adv Mater; 2021 Jun; 33(25):e2100353. PubMed ID: 33998065
    [TBL] [Abstract][Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.