These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34555905)

  • 1. Quantum Yield Measurements of Photochemical Reaction-Based Afterglow Luminescence Materials.
    Zhou Q; Xu M; Feng W; Li F
    J Phys Chem Lett; 2021 Oct; 12(39):9455-9462. PubMed ID: 34555905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications.
    Yang X; Waterhouse GIN; Lu S; Yu J
    Chem Soc Rev; 2023 Nov; 52(22):8005-8058. PubMed ID: 37880991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The long rod-shaped Sr
    Hai O; Qin B; Xiao XN; Ren Q; Wu XL; Pei MK; Li J
    Luminescence; 2024 Feb; 39(2):e4695. PubMed ID: 38402879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triply Hiding Optical Information via Excitation-Dependent Allochroic Photoluminescence Based on Cellulose Derivates.
    Shi Z; Zhao W; Zhang Y; Yang D; Gan L; Huang J
    Small; 2023 Jan; 19(3):e2205697. PubMed ID: 36408922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Blue Afterglow through Molecular Fusion for Bio-applications.
    Su X; Kong X; Sun K; Liu Q; Pei Y; Hu D; Xu M; Feng W; Li F
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202201630. PubMed ID: 35353427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Single-Phase Tunable Dual-Color Luminescence with High Quantum Yield Greater than 100% for Information Encryption and LED Applications.
    Chen H; Wang D; Hou R; Sun D; Meng L; Wu K; Wang J; Shen C
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10325-10334. PubMed ID: 38358397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolor Afterglow from Carbon Dots: Preparation and Mechanism.
    Ran Z; Liu J; Zhuang J; Liu Y; Hu C
    Small Methods; 2024 Jan; 8(1):e2301013. PubMed ID: 37891712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute quantum yield measurement of powder samples.
    Moreno LA
    J Vis Exp; 2012 May; (63):e3066. PubMed ID: 22617474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Afterglow System
    Guo L; Sun Y; Su X; Sun K; Chen L; Fan Y; Pei Y; Yin J; Li Y; Hu D; Chen L; Xu M; Feng W; Li F
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29321-29329. PubMed ID: 37289002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging.
    Liu Y; Teng L; Lyu Y; Song G; Zhang XB; Tan W
    Nat Commun; 2022 Apr; 13(1):2216. PubMed ID: 35468901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides.
    Mao L; Guo P; Wang S; Cheetham AK; Seshadri R
    J Am Chem Soc; 2020 Aug; 142(31):13582-13589. PubMed ID: 32693585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-long Near-infrared Repeatable Photochemical Afterglow Mediated by Reversible Storage of Singlet Oxygen for Information Encryption.
    Chen L; Sun K; Hu D; Su X; Guo L; Yin J; Pei Y; Fan Y; Liu Q; Xu M; Feng W; Li F
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218670. PubMed ID: 36723229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving excitation wavelength-power-dependent colorful luminescence
    Zhao C; Meng Z; Guo Z; Wang Z; Cao J; Zhu J; Ma C; Zhang M; Liu W
    Dalton Trans; 2023 Oct; 52(39):14132-14141. PubMed ID: 37747221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited State Modulation for Organic Afterglow: Materials and Applications.
    Xu S; Chen R; Zheng C; Huang W
    Adv Mater; 2016 Dec; 28(45):9920-9940. PubMed ID: 27634285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical treatment of Photoluminescence Quantum Yield Measurements.
    Fries F; Reineke S
    Sci Rep; 2019 Oct; 9(1):15638. PubMed ID: 31666544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the quantum confinement effect and enhanced luminescence of red-emitting P
    Fan G; Zhang H; Fan D; Jiang R; Ruan F; Li N; Su X
    Dalton Trans; 2021 Sep; 50(37):13112-13123. PubMed ID: 34581346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous enhancement of photoluminescence and afterglow luminescence through Bi
    Xie W; Zou C; Li S; Sun J; Kang F; Sun G
    Phys Chem Chem Phys; 2018 May; 20(20):13983-13993. PubMed ID: 29744499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afterglow Carbon Dots: From Fundamentals to Applications.
    Peng C; Chen X; Chen M; Lu S; Wang Y; Wu S; Liu X; Huang W
    Research (Wash D C); 2021; 2021():6098925. PubMed ID: 38617379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications.
    Krishnaiah KV; de Lima Filho ES; Ledemi Y; Nemova G; Messaddeq Y; Kashyap R
    Sci Rep; 2016 Feb; 6():21905. PubMed ID: 26915817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicolor Output from 2D Hybrid Perovskites with Wide Band Gap: Highly Efficient White Emission, Dual-Color Afterglow, and Switch between Fluorescence and Phosphorescence.
    Huang Q; Yang S; Feng S; Zhen H; Lin Z; Ling Q
    J Phys Chem Lett; 2021 Jan; 12(3):1040-1045. PubMed ID: 33470819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.