BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 3455605)

  • 1. The development of serotonergic raphespinal projections in Xenopus laevis.
    van Mier P; Joosten HW; van Rheden R; ten Donkelaar HJ
    Int J Dev Neurosci; 1986; 4(5):465-75. PubMed ID: 3455605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis.
    van Mier P; ten Donkelaar HJ
    Anat Embryol (Berl); 1984; 170(3):295-306. PubMed ID: 6335361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic principles in the spinal projections of serotonergic and non-serotonergic brainstem neurons in the rat.
    Skagerberg G; Björklund A
    Neuroscience; 1985 Jun; 15(2):445-80. PubMed ID: 4022334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study.
    Wolters JG; ten Donkelaar HJ; Steinbusch HW; Verhofstad AA
    Neuroscience; 1985 Jan; 14(1):169-93. PubMed ID: 3883229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and organization of the descending serotonergic brainstem-spinal projections in the sea lamprey.
    Barreiro-Iglesias A; Villar-Cerviño V; Anadón R; Rodicio MC
    J Chem Neuroanat; 2008 Oct; 36(2):77-84. PubMed ID: 18602462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent: evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphe magnus.
    Bowker RM; Abbott LC
    Brain Res; 1990 Mar; 512(1):15-25. PubMed ID: 2337803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonergic and non-serotonergic raphe neurons projecting to the feline lumbar and cervical spinal cord: a quantitative horseradish peroxidase-immunocytochemical study.
    Bowker RM; Reddy VK; Fung SJ; Chan JY; Barnes CD
    Neurosci Lett; 1987 Mar; 75(1):31-7. PubMed ID: 3574767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis. An HRP study.
    van Mier P; van Rheden R; ten Donkelaar HJ
    Anat Embryol (Berl); 1985; 172(3):311-24. PubMed ID: 4061871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonergic projections to the ventral respiratory column from raphe nuclei in rats.
    Morinaga R; Nakamuta N; Yamamoto Y
    Neurosci Res; 2019 Jun; 143():20-30. PubMed ID: 29803764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of serotoninergic system in the brain and spinal cord of the chick.
    Okado N; Sako H; Homma S; Ishikawa K
    Prog Neurobiol; 1992; 38(1):93-123. PubMed ID: 1736325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions.
    Martin RF; Jordan LM; Willis WD
    J Comp Neurol; 1978 Nov; 182(1):77-88. PubMed ID: 701490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human raphe nuclei and the serotonergic system.
    Hornung JP
    J Chem Neuroanat; 2003 Dec; 26(4):331-43. PubMed ID: 14729135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.
    van Mier P; ten Donkelaar HJ
    J Neurosci; 1989 Jan; 9(1):25-37. PubMed ID: 2913206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innervation of serotonergic medullary raphe neurons from cells of the rostral ventrolateral medulla in rats.
    Zagon A
    Neuroscience; 1993 Aug; 55(3):849-67. PubMed ID: 7692351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study.
    Bowker RM; Westlund KN; Coulter JD
    Brain Res; 1981 Dec; 226(1-2):187-99. PubMed ID: 7028211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-CD11d integrin antibody treatment restores normal serotonergic projections to the dorsal, intermediate, and ventral horns of the injured spinal cord.
    Oatway MA; Chen Y; Bruce JC; Dekaban GA; Weaver LC
    J Neurosci; 2005 Jan; 25(3):637-47. PubMed ID: 15659600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonergic projections to the spinal cord but not those to the olfactory bulb also contain substance P. A combined immunocytochemical and autoradiographic study following retrograde axonal transport of [3H]serotonin labeled products.
    Magoul R; Oblin A; Calas A; Araneda S
    Neuroscience; 1988 Sep; 26(3):959-69. PubMed ID: 2462186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus.
    Johnson H; Ulfhake B; Dagerlind A; Bennett GW; Fone KC; Hökfelt T
    Synapse; 1993 Sep; 15(1):63-89. PubMed ID: 7508641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of brainstem serotonergic interneurons in the development of a vertebrate spinal locomotor circuit.
    Sillar KT; Woolston AM; Wedderburn JF
    Proc Biol Sci; 1995 Jan; 259(1354):65-70. PubMed ID: 7700876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.