BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34556174)

  • 21. Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research.
    Eun K; Park MG; Jeong YW; Jeong YI; Hyun SH; Hwang WS; Kim SH; Kim H
    BMC Biotechnol; 2019 Jan; 19(1):1. PubMed ID: 30606176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis.
    Trümbach D; Pfeiffer S; Poppe M; Scherb H; Doll S; Wurst W; Schick JA
    BMC Genomics; 2017 Nov; 18(1):905. PubMed ID: 29178829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/CAS9-based DNA damage response screens reveal gene-drug interactions.
    Su D; Feng X; Colic M; Wang Y; Zhang C; Wang C; Tang M; Hart T; Chen J
    DNA Repair (Amst); 2020 Mar; 87():102803. PubMed ID: 31991288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. caRpools: an R package for exploratory data analysis and documentation of pooled CRISPR/Cas9 screens.
    Winter J; Breinig M; Heigwer F; Brügemann D; Leible S; Pelz O; Zhan T; Boutros M
    Bioinformatics; 2016 Feb; 32(4):632-4. PubMed ID: 26508755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of functional regulatory elements in the human genome using pooled CRISPR screens.
    Borys SM; Younger ST
    BMC Genomics; 2020 Jan; 21(1):107. PubMed ID: 32005150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in
    Viswanatha R; Li Z; Hu Y; Perrimon N
    Elife; 2018 Jul; 7():. PubMed ID: 30051818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities.
    Hart T; Chandrashekhar M; Aregger M; Steinhart Z; Brown KR; MacLeod G; Mis M; Zimmermann M; Fradet-Turcotte A; Sun S; Mero P; Dirks P; Sidhu S; Roth FP; Rissland OS; Durocher D; Angers S; Moffat J
    Cell; 2015 Dec; 163(6):1515-26. PubMed ID: 26627737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering essential cistromes using genome-wide CRISPR screens.
    Fei T; Li W; Peng J; Xiao T; Chen CH; Wu A; Huang J; Zang C; Liu XS; Brown M
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25186-25195. PubMed ID: 31727847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ELIMINATOR: essentiality analysis using multisystem networks and integer programming.
    Antoranz A; Ortiz M; Pey J
    BMC Bioinformatics; 2022 Aug; 23(1):324. PubMed ID: 35933325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis.
    Afonina I; Ong J; Chua J; Lu T; Kline KA
    mBio; 2020 Oct; 11(5):. PubMed ID: 33082254
    [No Abstract]   [Full Text] [Related]  

  • 32. BAGEL: a computational framework for identifying essential genes from pooled library screens.
    Hart T; Moffat J
    BMC Bioinformatics; 2016 Apr; 17():164. PubMed ID: 27083490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells.
    Rossiter NJ; Huggler KS; Adelmann CH; Keys HR; Soens RW; Sabatini DM; Cantor JR
    Cell Metab; 2021 Jun; 33(6):1248-1263.e9. PubMed ID: 33651980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing.
    Iida M; Suzuki M; Sakane Y; Nishide H; Uchiyama I; Yamamoto T; Suzuki KT; Fujii S
    Genes Cells; 2020 Jul; 25(7):498-509. PubMed ID: 32323394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CoRe: a robustly benchmarked R package for identifying core-fitness genes in genome-wide pooled CRISPR-Cas9 screens.
    Vinceti A; Karakoc E; Pacini C; Perron U; De Lucia RR; Garnett MJ; Iorio F
    BMC Genomics; 2021 Nov; 22(1):828. PubMed ID: 34789150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying chemogenetic interactions from CRISPR screens with drugZ.
    Colic M; Wang G; Zimmermann M; Mascall K; McLaughlin M; Bertolet L; Lenoir WF; Moffat J; Angers S; Durocher D; Hart T
    Genome Med; 2019 Aug; 11(1):52. PubMed ID: 31439014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens.
    Dede M; McLaughlin M; Kim E; Hart T
    Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens.
    Wang T; Lander ES; Sabatini DM
    Cold Spring Harb Protoc; 2016 Mar; 2016(3):pdb.top086892. PubMed ID: 26933254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconciling high-throughput gene essentiality data with metabolic network reconstructions.
    Blazier AS; Papin JA
    PLoS Comput Biol; 2019 Apr; 15(4):e1006507. PubMed ID: 30973869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reframing gene essentiality in terms of adaptive flexibility.
    Guzmán GI; Olson CA; Hefner Y; Phaneuf PV; Catoiu E; Crepaldi LB; Micas LG; Palsson BO; Feist AM
    BMC Syst Biol; 2018 Dec; 12(1):143. PubMed ID: 30558585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.