These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34556238)

  • 1. A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products.
    Lei T; Tobin B; Liu Z; Yang SY; Sun DW
    Anal Chim Acta; 2021 Oct; 1181():338898. PubMed ID: 34556238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient sub-pixel convolutional neural network for terahertz image super-resolution.
    Ruan H; Tan Z; Chen L; Wan W; Cao J
    Opt Lett; 2022 Jun; 47(12):3115-3118. PubMed ID: 35709064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain graph super-resolution using adversarial graph neural network with application to functional brain connectivity.
    Isallari M; Rekik I
    Med Image Anal; 2021 Jul; 71():102084. PubMed ID: 33971574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution reconstruction for terahertz imaging based on sub-pixel gradient field transform.
    Guo Y; Ling F; Li H; Zhou S; Ji J; Yao J
    Appl Opt; 2019 Aug; 58(23):6244-6250. PubMed ID: 31503766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain graph super-resolution for boosting neurological disorder diagnosis using unsupervised multi-topology connectional brain template learning.
    Mhiri I; Khalifa AB; Mahjoub MA; Rekik I
    Med Image Anal; 2020 Oct; 65():101768. PubMed ID: 32679534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a mechanism for reconstruction of terahertz single-frequency images of biological samples.
    Tang X; Zhou S; Zhu S; Pu J; Zheng Q; Ma L
    Appl Opt; 2022 Dec; 61(35):10345-10351. PubMed ID: 36607092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive terahertz image super-resolution with adjustable convolutional neural network.
    Li Y; Hu W; Zhang X; Xu Z; Ni J; Ligthart LP
    Opt Express; 2020 Jul; 28(15):22200-22217. PubMed ID: 32752486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz image super-resolution based on a deep convolutional neural network.
    Long Z; Wang T; You C; Yang Z; Wang K; Liu J
    Appl Opt; 2019 Apr; 58(10):2731-2735. PubMed ID: 31045074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution reconstruction for terahertz imaging.
    Xu LM; Fan WH; Liu J
    Appl Opt; 2014 Nov; 53(33):7891-7. PubMed ID: 25607865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz image super-resolution based on a complex convolutional neural network.
    Wang Y; Qi F; Wang J
    Opt Lett; 2021 Jul; 46(13):3123-3126. PubMed ID: 34197396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
    Qiu D; Zhang S; Liu Y; Zhu J; Zheng L
    Comput Methods Programs Biomed; 2020 Apr; 187():105059. PubMed ID: 31582263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].
    Zhang ZY; Ji T; Zhu ZY; Zhao HW; Chen M; Xiao TQ; Guo Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):1-4. PubMed ID: 25993808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed terahertz color imaging using a 100 kHz line scan camera.
    Tsubouchi M; Nagashima K
    Opt Express; 2020 Jun; 28(12):17820-17831. PubMed ID: 32679985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing subwavelength resolution terahertz holographic images.
    Wang R; Ren G; Ren Z; Liu J; Li S; Chen X; Li L
    Opt Express; 2022 Feb; 30(5):7137-7146. PubMed ID: 35299483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Image Resolution of Whole-Heart Coronary MRA Using Convolutional Neural Network.
    Kobayashi H; Nakayama R; Hizukuri A; Ishida M; Kitagawa K; Sakuma H
    J Digit Imaging; 2020 Apr; 33(2):497-503. PubMed ID: 31452007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dictionary learning based noisy image super-resolution via distance penalty weight model.
    Han Y; Zhao Y; Wang Q
    PLoS One; 2017; 12(7):e0182165. PubMed ID: 28759633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention.
    Hou Z; Cha X; An H; Zhang A; Lai D
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction.
    Li Z; Li L; Qin Y; Li G; Wang D; Zhou X
    Opt Express; 2016 Sep; 24(18):21134-46. PubMed ID: 27607716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual dense network for medical magnetic resonance images super-resolution.
    Zhu D; Qiu D
    Comput Methods Programs Biomed; 2021 Sep; 209():106330. PubMed ID: 34388684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.