These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 34556813)
21. Myeloidcells in the immunosuppressive microenvironment in glioblastoma: The characteristics and therapeutic strategies. Huang B; Zhang J; Zong W; Chen S; Zong Z; Zeng X; Zhang H Front Immunol; 2023; 14():994698. PubMed ID: 36923402 [TBL] [Abstract][Full Text] [Related]
22. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. DeCordova S; Shastri A; Tsolaki AG; Yasmin H; Klein L; Singh SK; Kishore U Front Immunol; 2020; 11():1402. PubMed ID: 32765498 [TBL] [Abstract][Full Text] [Related]
23. Immune involvement of the contralateral hemisphere in a glioblastoma mouse model. Crommentuijn MHW; Schetters STT; Dusoswa SA; Kruijssen LJW; Garcia-Vallejo JJ; van Kooyk Y J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32303613 [TBL] [Abstract][Full Text] [Related]
24. Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Zhang H; Hong Y; Wu T; Ben E; Li S; Hu L; Xie T Front Immunol; 2024; 15():1401967. PubMed ID: 38915399 [TBL] [Abstract][Full Text] [Related]
25. Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction. Di Ianni N; Musio S; Pellegatta S Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33923299 [TBL] [Abstract][Full Text] [Related]
26. Nivolumab Reaches Brain Lesions in Patients with Recurrent Glioblastoma and Induces T-cell Activity and Upregulation of Checkpoint Pathways. Skadborg SK; Maarup S; Draghi A; Borch A; Hendriksen S; Mundt F; Pedersen V; Mann M; Christensen IJ; Skjøth-Ramussen J; Yde CW; Kristensen BW; Poulsen HS; Hasselbalch B; Svane IM; Lassen U; Hadrup SR Cancer Immunol Res; 2024 Sep; 12(9):1202-1220. PubMed ID: 38885356 [TBL] [Abstract][Full Text] [Related]
28. Quantitative analysis of immune cells within the tumor microenvironment of glioblastoma and their relevance for prognosis. Wang L; He Z; Fan S; Mo L; Li Y; Yuan X; Xu B; Mou Y; Yin Y Int Immunopharmacol; 2024 Dec; 142(Pt A):113109. PubMed ID: 39255678 [TBL] [Abstract][Full Text] [Related]
29. Explicating the Pivotal Pathogenic, Diagnostic, and Therapeutic Biomarker Potentials of Myeloid-Derived Suppressor Cells in Glioblastoma. Richard SA Dis Markers; 2020; 2020():8844313. PubMed ID: 33204365 [TBL] [Abstract][Full Text] [Related]
30. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Nóbrega AHL; Pimentel RS; Prado AP; Garcia J; Frozza RL; Bernardi A Curr Cancer Drug Targets; 2024; 24(6):579-594. PubMed ID: 38310461 [TBL] [Abstract][Full Text] [Related]
31. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. Blank A; Kremenetskaia I; Urbantat RM; Acker G; Turkowski K; Radke J; Schneider UC; Vajkoczy P; Brandenburg S J Pathol; 2021 Feb; 253(2):160-173. PubMed ID: 33044746 [TBL] [Abstract][Full Text] [Related]
32. Macrophages/Microglia in the Glioblastoma Tumor Microenvironment. Ma J; Chen CC; Li M Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071306 [TBL] [Abstract][Full Text] [Related]
33. The Interplay between Glioblastoma and Its Microenvironment. Dapash M; Hou D; Castro B; Lee-Chang C; Lesniak MS Cells; 2021 Aug; 10(9):. PubMed ID: 34571905 [TBL] [Abstract][Full Text] [Related]
34. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Yabo YA; Moreno-Sanchez PM; Pires-Afonso Y; Kaoma T; Nosirov B; Scafidi A; Ermini L; Lipsa A; Oudin A; Kyriakis D; Grzyb K; Poovathingal SK; Poli A; Muller A; Toth R; Klink B; Berchem G; Berthold C; Hertel F; Mittelbronn M; Heiland DH; Skupin A; Nazarov PV; Niclou SP; Michelucci A; Golebiewska A Genome Med; 2024 Apr; 16(1):51. PubMed ID: 38566128 [TBL] [Abstract][Full Text] [Related]
35. Macrophages and microglia: the cerberus of glioblastoma. Buonfiglioli A; Hambardzumyan D Acta Neuropathol Commun; 2021 Mar; 9(1):54. PubMed ID: 33766119 [TBL] [Abstract][Full Text] [Related]
36. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Feldman L Front Immunol; 2024; 15():1384249. PubMed ID: 38994360 [TBL] [Abstract][Full Text] [Related]
37. Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth. Achyut BR; Angara K; Jain M; Borin TF; Rashid MH; Iskander ASM; Ara R; Kolhe R; Howard S; Venugopal N; Rodriguez PC; Bradford JW; Arbab AS Sci Rep; 2017 Oct; 7(1):13754. PubMed ID: 29062041 [TBL] [Abstract][Full Text] [Related]
38. S100A9, as a potential predictor of prognosis and immunotherapy response for GBM, promotes the malignant progression of GBM cells and migration of M2 macrophages. Ji Q; Li Z; Guo Y; Zhang X Aging (Albany NY); 2024 Aug; 16(15):11513-11534. PubMed ID: 39137310 [TBL] [Abstract][Full Text] [Related]
39. The Dynamics of Interactions Among Immune and Glioblastoma Cells. Eder K; Kalman B Neuromolecular Med; 2015 Dec; 17(4):335-52. PubMed ID: 26224516 [TBL] [Abstract][Full Text] [Related]
40. Combination immunotherapy strategies for glioblastoma. Chan HY; Choi J; Jackson C; Lim M J Neurooncol; 2021 Feb; 151(3):375-391. PubMed ID: 33611705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]