These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34556860)

  • 1. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation.
    Dai W; Li A; Yu NJ; Nguyen T; Leach RW; Wühr M; Kleiner RE
    Nat Chem Biol; 2021 Nov; 17(11):1178-1187. PubMed ID: 34556860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins.
    Dai W; Yu NJ; Kleiner RE
    Acc Chem Res; 2023 Oct; 56(19):2726-2739. PubMed ID: 37733063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases.
    Arguello AE; Li A; Sun X; Eggert TW; Mairhofer E; Kleiner RE
    Nat Commun; 2022 Jul; 13(1):4176. PubMed ID: 35853884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell type-specific translational regulation by human DUS enzymes.
    Yu NJ; Dai W; Li A; He M; Kleiner RE
    bioRxiv; 2023 Nov; ():. PubMed ID: 37965204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification.
    Brégeon D; Pecqueur L; Toubdji S; Sudol C; Lombard M; Fontecave M; de Crécy-Lagard V; Motorin Y; Helm M; Hamdane D
    ACS Chem Biol; 2022 Jul; 17(7):1638-1657. PubMed ID: 35737906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimal sequence motif drives selective tRNA dihydrouridylation by hDUS2.
    Ji J; Yu NJ; Kleiner RE
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence- and Structure-Specific tRNA Dihydrouridylation by hDUS2.
    Ji J; Yu NJ; Kleiner RE
    ACS Cent Sci; 2024 Apr; 10(4):803-812. PubMed ID: 38680565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation.
    Finet O; Yague-Sanz C; Krüger LK; Tran P; Migeot V; Louski M; Nevers A; Rougemaille M; Sun J; Ernst FGM; Wacheul L; Wery M; Morillon A; Dedon P; Lafontaine DLJ; Hermand D
    Mol Cell; 2022 Jan; 82(2):404-419.e9. PubMed ID: 34798057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Quantitative Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Using Stable Isotope-Labeled Peptides.
    Qi TF; Liu X; Tang F; Yin J; Yu K; Wang Y
    Anal Chem; 2022 Sep; 94(37):12559-12564. PubMed ID: 36084281
    [No Abstract]   [Full Text] [Related]  

  • 10. RNA Chemical Proteomics Reveals the N
    Arguello AE; DeLiberto AN; Kleiner RE
    J Am Chem Soc; 2017 Dec; 139(48):17249-17252. PubMed ID: 29140688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA.
    Draycott AS; Schaening-Burgos C; Rojas-Duran MF; Wilson L; Schärfen L; Neugebauer KM; Nachtergaele S; Gilbert WV
    PLoS Biol; 2022 May; 20(5):e3001622. PubMed ID: 35609439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three distinct 3-methylcytidine (m
    Xu L; Liu X; Sheng N; Oo KS; Liang J; Chionh YH; Xu J; Ye F; Gao YG; Dedon PC; Fu XY
    J Biol Chem; 2017 Sep; 292(35):14695-14703. PubMed ID: 28655767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping RNA Modifications Using Photo-Crosslinking-Assisted Modification Sequencing.
    Cullen BR; Tsai K
    Methods Mol Biol; 2021; 2298():123-134. PubMed ID: 34085242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical crosslinking enhances RNA immunoprecipitation for efficient identification of binding sites of proteins that photo-crosslink poorly with RNA.
    Patton RD; Sanjeev M; Woodward LA; Mabin JW; Bundschuh R; Singh G
    RNA; 2020 Sep; 26(9):1216-1233. PubMed ID: 32467309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction.
    Rider LW; Ottosen MB; Gattis SG; Palfey BA
    J Biol Chem; 2009 Apr; 284(16):10324-33. PubMed ID: 19139092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide Identification of RNA-binding Protein Binding Sites Using Photoactivatable-Ribonucleoside-Enhanced Crosslinking Immunoprecipitation (PAR-CLIP).
    Maatz H; Kolinski M; Hubner N; Landthaler M
    Curr Protoc Mol Biol; 2017 Apr; 118():27.6.1-27.6.19. PubMed ID: 28369676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro dihydrouridine formation by tRNA dihydrouridine synthase from Thermus thermophilus, an extreme-thermophilic eubacterium.
    Kusuba H; Yoshida T; Iwasaki E; Awai T; Kazayama A; Hirata A; Tomikawa C; Yamagami R; Hori H
    J Biochem; 2015 Dec; 158(6):513-21. PubMed ID: 26112661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoproteomic capture of RNA binding activity in living cells.
    Heindel AJ; Brulet JW; Wang X; Founds MW; Libby AH; Bai DL; Lemke MC; Leace DM; Harris TE; Hafner M; Hsu KL
    Nat Commun; 2023 Oct; 14(1):6282. PubMed ID: 37805600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins.
    Hafner M; Landthaler M; Burger L; Khorshid M; Hausser J; Berninger P; Rothballer A; Ascano M; Jungkamp AC; Munschauer M; Ulrich A; Wardle GS; Dewell S; Zavolan M; Tuschl T
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in CLIP Technologies for Studies of Protein-RNA Interactions.
    Lee FCY; Ule J
    Mol Cell; 2018 Feb; 69(3):354-369. PubMed ID: 29395060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.