These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34557112)
1. Multicomponent Mechanical Characterization of Atherosclerotic Human Coronary Arteries: An Experimental and Computational Hybrid Approach. Guvenir Torun S; Torun HM; Hansen HHG; Gandini G; Berselli I; Codazzi V; de Korte CL; van der Steen AFW; Migliavacca F; Chiastra C; Akyildiz AC Front Physiol; 2021; 12():733009. PubMed ID: 34557112 [TBL] [Abstract][Full Text] [Related]
2. Multicomponent material property characterization of atherosclerotic human carotid arteries through a Bayesian Optimization based inverse finite element approach. Guvenir Torun S; Torun HM; Hansen HHG; de Korte CL; van der Steen AFW; Gijsen FJH; Akyildiz AC J Mech Behav Biomed Mater; 2022 Feb; 126():104996. PubMed ID: 34864574 [TBL] [Abstract][Full Text] [Related]
3. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis. Akyildiz AC; Hansen HH; Nieuwstadt HA; Speelman L; De Korte CL; van der Steen AF; Gijsen FJ Ann Biomed Eng; 2016 Apr; 44(4):968-79. PubMed ID: 26399991 [TBL] [Abstract][Full Text] [Related]
4. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. de Korte CL; Fekkes S; Nederveen AJ; Manniesing R; Hansen HR IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1613-1623. PubMed ID: 27249826 [TBL] [Abstract][Full Text] [Related]
5. Patient specific characterization of artery and plaque material properties in peripheral artery disease. Noble C; Carlson KD; Neumann E; Dragomir-Daescu D; Erdemir A; Lerman A; Young M J Mech Behav Biomed Mater; 2020 Jan; 101():103453. PubMed ID: 31585351 [TBL] [Abstract][Full Text] [Related]
6. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
8. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. Karimi A; Razaghi R; Shojaei A; Navidbakhsh M Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956 [TBL] [Abstract][Full Text] [Related]
9. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475 [TBL] [Abstract][Full Text] [Related]
10. Patient-specific Finite Element Model of Coronary Artery Stenting. Razaghi R; Karimi A; Taheri RA Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186 [TBL] [Abstract][Full Text] [Related]
11. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501 [TBL] [Abstract][Full Text] [Related]
12. Artery buckling affects the mechanical stress in atherosclerotic plaques. Sanyal A; Han HC Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S4. PubMed ID: 25603490 [TBL] [Abstract][Full Text] [Related]
13. In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method. Ohayon J; Teppaz P; Finet G; Rioufol G Coron Artery Dis; 2001 Dec; 12(8):655-63. PubMed ID: 11811331 [TBL] [Abstract][Full Text] [Related]
15. Intima heterogeneity in stress assessment of atherosclerotic plaques. Akyildiz AC; Speelman L; van Velzen B; Stevens RRF; van der Steen AFW; Huberts W; Gijsen FJH Interface Focus; 2018 Feb; 8(1):20170008. PubMed ID: 29285345 [TBL] [Abstract][Full Text] [Related]
16. Automated finite element approach to generate anatomical patient-specific biomechanical models of atherosclerotic arteries from virtual histology-intravascular ultrasound. Warren JL; Yoo JE; Meyer CA; Molony DS; Samady H; Hayenga HN Front Med Technol; 2022; 4():1008540. PubMed ID: 36523426 [TBL] [Abstract][Full Text] [Related]
17. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986 [TBL] [Abstract][Full Text] [Related]
18. An investigation into the critical role of fibre orientation in the ultimate tensile strength and stiffness of human carotid plaque caps. Johnston RD; Gaul RT; Lally C Acta Biomater; 2021 Apr; 124():291-300. PubMed ID: 33571712 [TBL] [Abstract][Full Text] [Related]
19. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315 [TBL] [Abstract][Full Text] [Related]
20. A patient-specific numerical modeling of the spontaneous coronary artery dissection in relation to atherosclerosis. Karimi A; Razaghi R; Koyama M Comput Methods Programs Biomed; 2019 Dec; 182():105060. PubMed ID: 31514089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]