These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34557112)
21. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries. Pazos V; Mongrain R; Tardif JC IEEE Trans Biomed Eng; 2010 Jun; 57(6):1520-8. PubMed ID: 20172784 [TBL] [Abstract][Full Text] [Related]
22. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries. Rezvani-Sharif A; Tafazzoli-Shadpour M; Avolio A Med Biol Eng Comput; 2019 Mar; 57(3):731-740. PubMed ID: 30374700 [TBL] [Abstract][Full Text] [Related]
23. Mechanical characterization of 3D printed mimic of human artery affected by atherosclerotic plaque through numerical and experimental methods. Guarnera D; Carrera E; Hansen CJ; Maiarù M Biomech Model Mechanobiol; 2021 Oct; 20(5):1969-1980. PubMed ID: 34227022 [TBL] [Abstract][Full Text] [Related]
24. Impact of Fiber Structure on the Material Stability and Rupture Mechanisms of Coronary Atherosclerotic Plaques. Douglas GR; Brown AJ; Gillard JH; Bennett MR; Sutcliffe MPF; Teng Z Ann Biomed Eng; 2017 Jun; 45(6):1462-1474. PubMed ID: 28361184 [TBL] [Abstract][Full Text] [Related]
26. Mechanics of Atherosclerotic Plaques: Effect of Heart Rate. Zareh M; Katul R; Mohammadi H Cardiovasc Eng Technol; 2019 Jun; 10(2):344-353. PubMed ID: 30949919 [TBL] [Abstract][Full Text] [Related]
27. Echoing Plaque Activity of the Coronary and Intracranial Arteries in Patients With Stroke. Chung JW; Bang OY; Lee MJ; Hwang J; Cha J; Choi JH; Choe YH Stroke; 2016 Jun; 47(6):1527-33. PubMed ID: 27217505 [TBL] [Abstract][Full Text] [Related]
28. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Shojaei A Tissue Cell; 2015 Apr; 47(2):152-8. PubMed ID: 25758947 [TBL] [Abstract][Full Text] [Related]
29. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Shojaei A; Faghihi S Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2550-4. PubMed ID: 23623067 [TBL] [Abstract][Full Text] [Related]
30. Morphometric and Mechanical Analyses of Calcifications and Fibrous Plaque Tissue in Carotid Arteries for Plaque Rupture Risk Assessment. Gijsen FJH; Vis B; Barrett HE; Zadpoor AA; Verhagen HJ; Bos D; van der Steen AFW; Akyildiz AC IEEE Trans Biomed Eng; 2021 Apr; 68(4):1429-1438. PubMed ID: 33186100 [TBL] [Abstract][Full Text] [Related]
31. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Worthley SG; Helft G; Fuster V; Fayad ZA; Fallon JT; Osende JI; Roqué M; Shinnar M; Zaman AG; Rodriguez OJ; Verhallen P; Badimon JJ Atherosclerosis; 2000 Jun; 150(2):321-9. PubMed ID: 10856524 [TBL] [Abstract][Full Text] [Related]
32. A finite element model for performing intravascular ultrasound elastography of human atherosclerotic coronary arteries. Baldewsing RA; de Korte CL; Schaar JA; Mastik F; van der Steen AF Ultrasound Med Biol; 2004 Jun; 30(6):803-13. PubMed ID: 15219960 [TBL] [Abstract][Full Text] [Related]
33. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399 [TBL] [Abstract][Full Text] [Related]
34. Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row computed tomography study of pressure-perfused, human ex-vivo coronary arteries. Halliburton SS; Schoenhagen P; Nair A; Stillman A; Lieber M; Murat Tuzcu E; Geoffrey Vince D; White RD Coron Artery Dis; 2006 Sep; 17(6):553-60. PubMed ID: 16905968 [TBL] [Abstract][Full Text] [Related]
35. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability. Abdelali M; Reiter S; Mongrain R; Bertrand M; L'Allier PL; Kritikou EA; Tardif JC J Mech Behav Biomed Mater; 2014 Apr; 32():210-224. PubMed ID: 24491969 [TBL] [Abstract][Full Text] [Related]
36. Intraluminal Ultrasonic Palpation Imaging Technique Revisited for Anisotropic Characterization of Healthy and Atherosclerotic Coronary Arteries: A Feasibility Study. Gómez A; Tacheau A; Finet G; Lagache M; Martiel JL; Floc'h SL; Yazdani SK; Elias-Zuñiga A; Pettigrew RI; Cloutier G; Ohayon J Ultrasound Med Biol; 2019 Jan; 45(1):35-49. PubMed ID: 30348475 [TBL] [Abstract][Full Text] [Related]
37. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Larose E; Yeghiazarians Y; Libby P; Yucel EK; Aikawa M; Kacher DF; Aikawa E; Kinlay S; Schoen FJ; Selwyn AP; Ganz P Circulation; 2005 Oct; 112(15):2324-31. PubMed ID: 16203910 [TBL] [Abstract][Full Text] [Related]
38. Intravascular ultrasound elastography: an overview. de Korte CL; van der Steen AF Ultrasonics; 2002 May; 40(1-8):859-65. PubMed ID: 12160059 [TBL] [Abstract][Full Text] [Related]
39. On the sensitivity of wall stresses in diseased arteries to variable material properties. Williamson SD; Lam Y; Younis HF; Huang H; Patel S; Kaazempur-Mofrad MR; Kamm RD J Biomech Eng; 2003 Feb; 125(1):147-55. PubMed ID: 12661209 [TBL] [Abstract][Full Text] [Related]
40. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Bioengineered; 2017 Mar; 8(2):154-170. PubMed ID: 27588460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]