These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34557716)

  • 1. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions.
    Cong S; Liu X; Jiang Y; Zhang W; Zhao Z
    Innovation (Camb); 2020 Nov; 1(3):100051. PubMed ID: 34557716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.
    Fan X; Wei P; Li G; Li M; Lan L; Hao Q; Qiu T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51618-51627. PubMed ID: 34674528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic Mechanisms or Chemical Mechanisms? Role of Interfacial Charge Transfer in the Plasmonic Metal/Semiconductor Heterojunction.
    Tang X; Fan X; Yao L; Li G; Li M; Zhao X; Hao Q; Qiu T
    J Phys Chem Lett; 2022 Aug; 13(33):7816-7823. PubMed ID: 35976103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing.
    Karthick Kannan P; Shankar P; Blackman C; Chung CH
    Adv Mater; 2019 Aug; 31(34):e1803432. PubMed ID: 30773698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alloy Engineering Allows On-Demand Design of Ultrasensitive Monolayer Semiconductor SERS Substrates.
    Tang X; Fan X; Zhou J; Wang S; Li M; Hou X; Jiang K; Ni Z; Zhao B; Hao Q; Qiu T
    Nano Lett; 2023 Aug; 23(15):7037-7045. PubMed ID: 37463459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A General Method for Large-Scale Fabrication of Semiconducting Oxides with High SERS Sensitivity.
    Zheng X; Ren F; Zhang S; Zhang X; Wu H; Zhang X; Xing Z; Qin W; Liu Y; Jiang C
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14534-14544. PubMed ID: 28398034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals.
    Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-Metal for Highly Sensitive and Stable Surface-Enhanced Raman Scattering.
    Tian Z; Bai H; Chen C; Ye Y; Kong Q; Li Y; Fan W; Yi W; Xi G
    iScience; 2019 Sep; 19():836-849. PubMed ID: 31505331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Tuning of the SERS Enhancement by Precise Defect Density Control.
    Zhou C; Sun L; Zhang F; Gu C; Zeng S; Jiang T; Shen X; Ang DS; Zhou J
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34091-34099. PubMed ID: 31433618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconductor-enhanced Raman scattering: active nanomaterials and applications.
    Han XX; Ji W; Zhao B; Ozaki Y
    Nanoscale; 2017 Apr; 9(15):4847-4861. PubMed ID: 28150834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance.
    Tang X; Hao Q; Hou X; Lan L; Li M; Yao L; Zhao X; Ni Z; Fan X; Qiu T
    Adv Mater; 2024 May; 36(19):e2312348. PubMed ID: 38302855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.