These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34557764)

  • 1. Coupled deep-mantle carbon-water cycle: Evidence from lower-mantle diamonds.
    Wang W; Tschauner O; Huang S; Wu Z; Meng Y; Bechtel H; Mao HK
    Innovation (Camb); 2021 May; 2(2):100117. PubMed ID: 34557764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds.
    Regier ME; Pearson DG; Stachel T; Luth RW; Stern RA; Harris JW
    Nature; 2020 Sep; 585(7824):234-238. PubMed ID: 32908266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blue boron-bearing diamonds from Earth's lower mantle.
    Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W
    Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
    Walter MJ; Kohn SC; Araujo D; Bulanova GP; Smith CB; Gaillou E; Wang J; Steele A; Shirey SB
    Science; 2011 Oct; 334(6052):54-7. PubMed ID: 21921159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle.
    Tschauner O; Huang S; Greenberg E; Prakapenka VB; Ma C; Rossman GR; Shen AH; Zhang D; Newville M; Lanzirotti A; Tait K
    Science; 2018 Mar; 359(6380):1136-1139. PubMed ID: 29590042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds.
    Förster MW; Foley SF; Marschall HR; Alard O; Buhre S
    Sci Adv; 2019 May; 5(5):eaau2620. PubMed ID: 31149629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaSiO
    Nestola F; Korolev N; Kopylova M; Rotiroti N; Pearson DG; Pamato MG; Alvaro M; Peruzzo L; Gurney JJ; Moore AE; Davidson J
    Nature; 2018 Mar; 555(7695):237-241. PubMed ID: 29516998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oceanic and super-deep continental diamonds share a transition zone origin and mantle plume transportation.
    Doucet LS; Li ZX; Gamal El Dien H
    Sci Rep; 2021 Aug; 11(1):16958. PubMed ID: 34417509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key new pieces of the HIMU puzzle from olivines and diamond inclusions.
    Weiss Y; Class C; Goldstein SL; Hanyu T
    Nature; 2016 Sep; 537(7622):666-670. PubMed ID: 27595333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of diamond in the Earth's mantle.
    Stachel T; Harris JW
    J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diamond growth from organic compounds in hydrous fluids deep within the Earth.
    Frezzotti ML
    Nat Commun; 2019 Oct; 10(1):4952. PubMed ID: 31666507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viable mechanism to form boron-bearing diamonds in deep Earth.
    Liu S; Lu W; Zhang X; Song J; Lü J; Liu X; Wang Y; Chen C; Ma Y
    Sci Bull (Beijing); 2023 Jul; 68(13):1456-1461. PubMed ID: 37353437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The growth of lithospheric diamonds.
    Bureau H; Remusat L; Esteve I; Pinti DL; Cartigny P
    Sci Adv; 2018 Jun; 4(6):eaat1602. PubMed ID: 29881779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the stability of ultrahydrous stishovite in Earth's lower mantle.
    Lin Y; Hu Q; Meng Y; Walter M; Mao HK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):184-189. PubMed ID: 31843935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamond formation in an electric field under deep Earth conditions.
    Palyanov YN; Borzdov YM; Sokol AG; Bataleva YV; Kupriyanov IN; Reutsky VN; Wiedenbeck M; Sobolev NV
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrous aluminous silica phases as major water hosts in high-temperature lower mantle.
    Ishii T; Criniti G; Ohtani E; Purevjav N; Fei H; Katsura T; Mao HK
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2211243119. PubMed ID: 36279458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A look inside of diamond-forming media in deep subduction zones.
    Dobrzhinetskaya LF; Wirth R; Green HW
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9128-32. PubMed ID: 17389388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for oxygenation of Fe-Mg oxides at mid-mantle conditions and the rise of deep oxygen.
    Liu J; Wang C; Lv C; Su X; Liu Y; Tang R; Chen J; Hu Q; Mao HK; Mao WL
    Natl Sci Rev; 2021 Apr; 8(4):nwaa096. PubMed ID: 34691604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.