These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 34557965)
1. Transcriptome repository of North-Western Himalayan endangered medicinal herbs: a paramount approach illuminating molecular perspective of phytoactive molecules and secondary metabolism. Kapoor B; Kumar A; Kumar P Mol Genet Genomics; 2021 Nov; 296(6):1177-1202. PubMed ID: 34557965 [TBL] [Abstract][Full Text] [Related]
2. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Dhiman N; Kumar A; Kumar D; Bhattacharya A Sci Rep; 2020 Oct; 10(1):17186. PubMed ID: 33057076 [TBL] [Abstract][Full Text] [Related]
3. The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants. Scossa F; Benina M; Alseekh S; Zhang Y; Fernie AR Planta Med; 2018 Aug; 84(12-13):855-873. PubMed ID: 29843183 [TBL] [Abstract][Full Text] [Related]
4. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. Yuan Y; Song L; Li M; Liu G; Chu Y; Ma L; Zhou Y; Wang X; Gao W; Qin S; Yu J; Wang X; Huang L BMC Genomics; 2012 May; 13():195. PubMed ID: 22607188 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) - High value Himalayan medicinal herb. Kumar P; Ashrita ; Acharya V; Warghat AR Phytochemistry; 2021 Mar; 183():112631. PubMed ID: 33370713 [TBL] [Abstract][Full Text] [Related]
6. De Novo Deep Transcriptome Analysis of Medicinal Plants for Gene Discovery in Biosynthesis of Plant Natural Products. Han R; Rai A; Nakamura M; Suzuki H; Takahashi H; Yamazaki M; Saito K Methods Enzymol; 2016; 576():19-45. PubMed ID: 27480681 [TBL] [Abstract][Full Text] [Related]
7. Next-generation sequencing in the biodiversity conservation of endangered medicinal plants. Sharma R; Patil C; Majeed J; Kumar S; Aggarwal G Environ Sci Pollut Res Int; 2022 Oct; 29(49):73795-73808. PubMed ID: 36098925 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional Factor-Mediated Regulation of Active Component Biosynthesis in Medicinal Plants. Wang M; Qiu X; Pan X; Li C Curr Pharm Biotechnol; 2021; 22(6):848-866. PubMed ID: 32568019 [TBL] [Abstract][Full Text] [Related]
9. Habitat suitability, range dynamics, and threat assessment of Swertia petiolata D. Don: a Himalayan endemic medicinally important plant under climate change. Wani BA; Wani SA; Magray JA; Ahmad R; Ganie AH; Nawchoo IA Environ Monit Assess; 2022 Dec; 195(1):214. PubMed ID: 36538137 [TBL] [Abstract][Full Text] [Related]
10. The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Alami MM; Ouyang Z; Zhang Y; Shu S; Yang G; Mei Z; Wang X Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555572 [TBL] [Abstract][Full Text] [Related]
11. Application of genetics and biotechnology for improving medicinal plants. Niazian M Planta; 2019 Apr; 249(4):953-973. PubMed ID: 30715560 [TBL] [Abstract][Full Text] [Related]
12. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. Hilal B; Khan MM; Fariduddin Q Plant Physiol Biochem; 2024 Jun; 211():108674. PubMed ID: 38705044 [TBL] [Abstract][Full Text] [Related]
13. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. Prashant SP; Bhawana M Physiol Plant; 2024; 176(4):e14400. PubMed ID: 38945697 [TBL] [Abstract][Full Text] [Related]
14. The genetic manipulation of medicinal and aromatic plants. Gómez-Galera S; Pelacho AM; Gené A; Capell T; Christou P Plant Cell Rep; 2007 Oct; 26(10):1689-715. PubMed ID: 17609957 [TBL] [Abstract][Full Text] [Related]
15. The known, unknown, and the intriguing about members of a critically endangered traditional medicinal plant genus Kakkar RA; Haneen MA; Parida AC; Sharma G Front Plant Sci; 2023; 14():1139215. PubMed ID: 37575934 [TBL] [Abstract][Full Text] [Related]
16. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Gandhi SG; Mahajan V; Bedi YS Planta; 2015 Feb; 241(2):303-17. PubMed ID: 25549846 [TBL] [Abstract][Full Text] [Related]
17. Molecular regulation of the key specialized metabolism pathways in medicinal plants. Shi M; Zhang S; Zheng Z; Maoz I; Zhang L; Kai G J Integr Plant Biol; 2024 Mar; 66(3):510-531. PubMed ID: 38441295 [TBL] [Abstract][Full Text] [Related]
18. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Yeshi K; Crayn D; Ritmejerytė E; Wangchuk P Molecules; 2022 Jan; 27(1):. PubMed ID: 35011546 [TBL] [Abstract][Full Text] [Related]
19. [Functional genomic approaches to explore secondary metabolites in medicinal plants]. Wang Y; Liu Z; Zhao A; Su M; Xie G; Jia W Zhongguo Zhong Yao Za Zhi; 2009 Jan; 34(1):6-10. PubMed ID: 19382439 [TBL] [Abstract][Full Text] [Related]
20. Predicting phytochemical diversity of medicinal and aromatic plants (MAPs) across eco-climatic zones and elevation in Uttarakhand using Generalized Additive Model. Tiwari D; Kewlani P; Gaira KS; Bhatt ID; Sundriyal RC; Pande V Sci Rep; 2023 Jul; 13(1):10888. PubMed ID: 37407604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]