These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34558047)

  • 1. Interaction quantitative modeling of mixed surfactants for synergistic solubilization by resonance light scattering.
    Xiang M; Lu Z; You Z; Wang X; Huang M; Xu W; Li H
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11874-11882. PubMed ID: 34558047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.
    Javanbakht G; Goual L
    J Contam Hydrol; 2016; 185-186():61-73. PubMed ID: 26826983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations.
    Ramezanzadeh M; Aminnaji M; Rezanezhad F; Ghazanfari MH; Babaei M
    Chemosphere; 2022 Feb; 289():133177. PubMed ID: 34890610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solubilization of DNAPLs by mixed surfactant: synergism and solubilization capacity.
    Zhao B; Zhu L
    J Hazard Mater; 2006 Aug; 136(3):513-9. PubMed ID: 16236435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of surfactant formulation on nonequilibrium NAPL solubilization.
    Zhong L; Mayer AS; Pope GA
    J Contam Hydrol; 2003 Jan; 60(1-2):55-75. PubMed ID: 12498574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation.
    Babaei M; Copty NK
    J Contam Hydrol; 2019 Feb; 221():69-81. PubMed ID: 30691860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review.
    Liu JW; Wei KH; Xu SW; Cui J; Ma J; Xiao XL; Xi BD; He XS
    Sci Total Environ; 2021 Feb; 756():144142. PubMed ID: 33302075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures.
    Huo L; Liu G; Yang X; Ahmad Z; Zhong H
    Chemosphere; 2020 Aug; 252():126620. PubMed ID: 32443278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilization of DNAPLs by mixed surfactant: reduction in partitioning losses of nonionic surfactant.
    Zhao B; Zhu L; Yang K
    Chemosphere; 2006 Feb; 62(5):772-9. PubMed ID: 15970307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil.
    Shi Z; Chen J; Liu J; Wang N; Sun Z; Wang X
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12769-74. PubMed ID: 26002358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larger aggregate formed by self-assembly process of the mixture surfactants enhance the dissolution and oxidative removal of non-aqueous phase liquid contaminants in aquifer.
    Wei KH; Zheng YM; Sun Y; Zhao ZQ; Xi BD; He XS
    Sci Total Environ; 2024 Feb; 912():169532. PubMed ID: 38145683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of in situ NAPL-contaminated aquifer bioremediation by biodegradable nutrient-surfactant mix.
    Zoller U; Rubin H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 Sep; 36(8):1451-71. PubMed ID: 11597107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.
    Cho MY; Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of surfactant flushing for remediating EDC-tar contamination.
    Liang C; Hsieh CL
    J Contam Hydrol; 2015; 177-178():158-66. PubMed ID: 25941757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-solubilization of polycyclic aromatic hydrocarbon mixtures in aqueous micellar systems and its correlation with FRET for enhanced remediation processes.
    Ashraf U; Lone MS; Masrat R; Shah RA; Afzal S; Chat OA; Dar AA
    Chemosphere; 2020 Mar; 242():125160. PubMed ID: 31669988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.