These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A; White BP; Rogers RE; Goebel E; Lopez MG; Syvyk AE; de Oliveira DA; Barreda HA; Benton J; Benavides OR; Dalal S; Bae E; Zhang Y; Maitland K; Nikolov Z; Liu F; Lee RH; Kaunas R; Gregory CA Cytotherapy; 2024 Apr; 26(4):372-382. PubMed ID: 38363250 [TBL] [Abstract][Full Text] [Related]
3. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion. Dias AD; Elicson JM; Murphy WL Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28509413 [TBL] [Abstract][Full Text] [Related]
4. Comparison of polystyrene and hydrogel microcarriers for optical imaging of adherent cells. Benavides OR; White BP; Gibbs HC; Kaunas R; Gregory CA; Maitland KC; Walsh AJ J Biomed Opt; 2024 Jun; 29(Suppl 2):S22708. PubMed ID: 38872791 [TBL] [Abstract][Full Text] [Related]
5. Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Tamura A; Kobayashi J; Yamato M; Okano T Biomaterials; 2012 May; 33(15):3803-12. PubMed ID: 22364728 [TBL] [Abstract][Full Text] [Related]
6. Controllable manipulation of alginate-gelatin core-shell microcarriers for HUMSCs expansion. Wu Y; Zheng Y; Jin Z; Li S; Wu W; An C; Guo J; Zhu Z; Zhou T; Zhou Y; Cen L Int J Biol Macromol; 2022 Sep; 216():1-13. PubMed ID: 35777503 [TBL] [Abstract][Full Text] [Related]
7. Dissolvable Gelatin-Based Microcarriers Generated through Droplet Microfluidics for Expansion and Culture of Mesenchymal Stromal Cells. Ng EX; Wang M; Neo SH; Tee CA; Chen CH; Van Vliet KJ Biotechnol J; 2021 Mar; 16(3):e2000048. PubMed ID: 33052012 [TBL] [Abstract][Full Text] [Related]
8. Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Yang HS; Jeon O; Bhang SH; Lee SH; Kim BS Cell Transplant; 2010; 19(9):1123-32. PubMed ID: 20719079 [TBL] [Abstract][Full Text] [Related]
9. Synthetic, Chemically Defined Polymer-Coated Microcarriers for the Expansion of Human Mesenchymal Stem Cells. Krutty JD; Dias AD; Yun J; Murphy WL; Gopalan P Macromol Biosci; 2019 Feb; 19(2):e1800299. PubMed ID: 30565870 [TBL] [Abstract][Full Text] [Related]
10. Solvent-free preparation of porous poly(l-lactide) microcarriers for cell culture. Kuterbekov M; Machillot P; Lhuissier P; Picart C; Jonas AM; Glinel K Acta Biomater; 2018 Jul; 75():300-311. PubMed ID: 29883812 [TBL] [Abstract][Full Text] [Related]
11. Enhanced attachment, growth and migration of smooth muscle cells on microcarriers produced using thermally induced phase separation. Ahmadi R; Mordan N; Forbes A; Day RM Acta Biomater; 2011 Apr; 7(4):1542-9. PubMed ID: 21187173 [TBL] [Abstract][Full Text] [Related]
12. Calcium-alginate gel bead cross-linked with gelatin as microcarrier for anchorage-dependent cell culture. Kwon YJ; Peng CA Biotechniques; 2002 Jul; 33(1):212-4, 216, 218. PubMed ID: 12139248 [TBL] [Abstract][Full Text] [Related]
13. Expansion of Chinese hamster ovary cells via a loose cluster-assisted suspension culture using cell-sized gelatin microcarriers. Hasebe Y; Yamada M; Utoh R; Seki M J Biosci Bioeng; 2023 May; 135(5):417-422. PubMed ID: 36931921 [TBL] [Abstract][Full Text] [Related]
14. Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture. Tamura A; Kobayashi J; Yamato M; Okano T Acta Biomater; 2012 Nov; 8(11):3904-13. PubMed ID: 22813847 [TBL] [Abstract][Full Text] [Related]
15. Supramolecular Responsive Chitosan Microcarriers for Cell Detachment Triggered by Adamantane. Huang L; Jiang Y; Chen X; Zhang W; Luo Q; Chen S; Wang S; Weng F; Xiao L Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836073 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic-Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform. Park W; Jang S; Kim TW; Bae J; Oh TI; Lee E Macromol Biosci; 2019 Aug; 19(8):e1900136. PubMed ID: 31268233 [TBL] [Abstract][Full Text] [Related]
17. TiO₂-doped phosphate glass microcarriers: a stable bioactive substrate for expansion of adherent mammalian cells. Guedes JC; Park JH; Lakhkar NJ; Kim HW; Knowles JC; Wall IB J Biomater Appl; 2013 Jul; 28(1):3-11. PubMed ID: 22935537 [TBL] [Abstract][Full Text] [Related]
18. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. Derakhti S; Safiabadi-Tali SH; Amoabediny G; Sheikhpour M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109782. PubMed ID: 31349523 [TBL] [Abstract][Full Text] [Related]
19. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension. Fan Y; Hsiung M; Cheng C; Tzanakakis ES Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous enhancement of cell proliferation and thermally induced harvest efficiency based on temperature-responsive cationic copolymer-grafted microcarriers. Tamura A; Nishi M; Kobayashi J; Nagase K; Yajima H; Yamato M; Okano T Biomacromolecules; 2012 Jun; 13(6):1765-73. PubMed ID: 22616950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]