These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34558506)

  • 1. Can lithium enhance the extent of axon regeneration and neurological recovery following peripheral nerve trauma?
    Kuffler DP
    Neural Regen Res; 2022 May; 17(5):948-952. PubMed ID: 34558506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of Neurological Function Following Peripheral Nerve Trauma.
    Kuffler DP; Foy C
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma.
    Kuffler DP
    Prog Neurobiol; 2014 May; 116():1-12. PubMed ID: 24380784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospects for Improving the Extent of Recovery following Peripheral Nerve Trauma: A Review.
    Foy C; Olivella G; Kuffler D
    P R Health Sci J; 2022 May; 41(2):89-95. PubMed ID: 35704527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoting neurological recovery following a traumatic peripheral nerve injury.
    Reyes O; Sosa I; Kuffler DP
    P R Health Sci J; 2005 Sep; 24(3):215-23. PubMed ID: 16329686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions.
    Sosa I; Reyes O; Kuffler DP
    Exp Neurol; 2005 Sep; 195(1):7-15. PubMed ID: 15935348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 18: Enhancement of nerve regeneration and recovery by immunosuppressive agents.
    Kuffler DP
    Int Rev Neurobiol; 2009; 87():347-62. PubMed ID: 19682647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classic axon guidance molecules control correct nerve bridge tissue formation and precise axon regeneration.
    Dun XP; Parkinson DB
    Neural Regen Res; 2020 Jan; 15(1):6-9. PubMed ID: 31535634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single session of brief electrical stimulation enhances axon regeneration through nerve autografts.
    Zuo KJ; Shafa G; Antonyshyn K; Chan K; Gordon T; Borschel GH
    Exp Neurol; 2020 Jan; 323():113074. PubMed ID: 31655047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue Engineered Axon Tracts Serve as Living Scaffolds to Accelerate Axonal Regeneration and Functional Recovery Following Peripheral Nerve Injury in Rats.
    Katiyar KS; Struzyna LA; Morand JP; Burrell JC; Clements B; Laimo FA; Browne KD; Kohn J; Ali Z; Ledebur HC; Smith DH; Cullen DK
    Front Bioeng Biotechnol; 2020; 8():492. PubMed ID: 32523945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model.
    Apel PJ; Garrett JP; Sierpinski P; Ma J; Atala A; Smith TL; Koman LA; Van Dyke ME
    J Hand Surg Am; 2008 Nov; 33(9):1541-7. PubMed ID: 18984336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration.
    Guénard V; Kleitman N; Morrissey TK; Bunge RP; Aebischer P
    J Neurosci; 1992 Sep; 12(9):3310-20. PubMed ID: 1527582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial-derived growth factor and pleiotrophin synergistically promote axonal regeneration in critical nerve injuries.
    Alsmadi NZ; Bendale GS; Kanneganti A; Shihabeddin T; Nguyen AH; Hor E; Dash S; Johnston B; Granja-Vazquez R; Romero-Ortega MI
    Acta Biomater; 2018 Sep; 78():165-177. PubMed ID: 30059799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF.
    Hoyng SA; De Winter F; Gnavi S; de Boer R; Boon LI; Korvers LM; Tannemaat MR; Malessy MJ; Verhaagen J
    Exp Neurol; 2014 Nov; 261():578-93. PubMed ID: 25128265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single injection of a novel nerve growth factor coacervate improves structural and functional regeneration after sciatic nerve injury in adult rats.
    Li R; Wu J; Lin Z; Nangle MR; Li Y; Cai P; Liu D; Ye L; Xiao Z; He C; Ye J; Zhang H; Zhao Y; Wang J; Li X; He Y; Ye Q; Xiao J
    Exp Neurol; 2017 Feb; 288():1-10. PubMed ID: 27983992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration.
    Han SB; Kim H; Lee H; Grove M; Smith GM; Son YJ
    J Neurosci; 2017 Nov; 37(45):10955-10970. PubMed ID: 28982707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Recovery following Repair of Long Nerve Gaps in Senior Patient 2.6 Years Posttrauma.
    Foy CA; Micheo WF; Kuffler DP
    Plast Reconstr Surg Glob Open; 2021 Sep; 9(9):e3831. PubMed ID: 34584828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
    Tong LL; Ding YQ; Jing HB; Li XY; Qi JG
    Neuroreport; 2015 May; 26(7):429-37. PubMed ID: 25830493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the Gap: Engineered Porcine-derived Urinary Bladder Matrix Conduits as a Novel Scaffold for Peripheral Nerve Regeneration.
    Nguyen L; Afshari A; Kelm ND; Pollins AC; Shack RB; Does MD; Thayer WP
    Ann Plast Surg; 2017 Jun; 78(6S Suppl 5):S328-S334. PubMed ID: 28328634
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.