BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34558676)

  • 1. The role of pollination in controlling Ginkgo biloba ovule development.
    D'Apice G; Moschin S; Araniti F; Nigris S; Di Marzo M; Muto A; Banfi C; Bruno L; Colombo L; Baldan B
    New Phytol; 2021 Dec; 232(6):2353-2368. PubMed ID: 34558676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of pollinated and unpollinated ovules in Ginkgo biloba: unravelling the role of pollen in ovule tissue maturation.
    Muto A; Talarico E; D'Apice G; Di Marzo M; Moschin S; Nigris S; Babolin N; Greco E; Araniti F; Chiappetta A; Colombo L; Baldan B; Bruno L
    J Exp Bot; 2024 Jun; 75(11):3351-3367. PubMed ID: 38459807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key regulatory genes involved in the sporophyte and gametophyte development in Ginkgo biloba ovules revealed by in situ expression analyses.
    D'Apice G; Moschin S; Nigris S; Ciarle R; Muto A; Bruno L; Baldan B
    Am J Bot; 2022 Jun; 109(6):887-898. PubMed ID: 35506584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed.
    Zumajo-Cardona C; Little DP; Stevenson D; Ambrose BA
    Sci Rep; 2021 Nov; 11(1):21995. PubMed ID: 34754044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid profiling in plants: identification and analysis of extracellular metabolites and miRNAs in pollination drops of Ginkgo biloba.
    Lu Z; Jiang B; Zhao B; Mao X; Lu J; Jin B; Wang L
    Tree Physiol; 2020 Oct; 40(10):1420-1436. PubMed ID: 32542386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of pollination drop withdrawal in Ginkgo biloba L.
    Jin B; Zhang L; Lu Y; Wang D; Jiang XX; Zhang M; Wang L
    BMC Plant Biol; 2012 May; 12():59. PubMed ID: 22548734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gymnosperm B-sister genes may be involved in ovule/seed development and, in some species, in the growth of fleshy fruit-like structures.
    Lovisetto A; Guzzo F; Busatto N; Casadoro G
    Ann Bot; 2013 Aug; 112(3):535-44. PubMed ID: 23761686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollen tube contents from failed fertilization contribute to seed coat initiation in
    Liu X; Adhikari PB; Kasahara RD
    F1000Res; 2019; 8():348. PubMed ID: 31031972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops.
    Prior N; Little SA; Boyes I; Griffith P; Husby C; Pirone-Davies C; Stevenson DW; Tomlinson PB; von Aderkas P
    Plant Reprod; 2019 Jun; 32(2):153-166. PubMed ID: 30430247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The behavior of pollination drop secretion in Ginkgo biloba L.
    Jin B; Jiang X; Wang D; Zhang L; Wan Y; Wang L
    Plant Signal Behav; 2012 Sep; 7(9):1168-76. PubMed ID: 22899081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental synchronization of male and female gametophytes in Ginkgo biloba and its neck mother cell division prior to fertilization.
    Zhang Z; Clayton SC; Cui K; Lee C
    Physiol Plant; 2013 Apr; 147(4):541-52. PubMed ID: 22978756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay between ovule number, pollination and resources as determinants of seed set in a modular plant.
    Strelin MM; Aizen MA
    PeerJ; 2018; 6():e5384. PubMed ID: 30083472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abortion occurs during double fertilization and ovule development in Paeonia ludlowii.
    Chen T; Xie M; Jiang Y; Yuan T
    J Plant Res; 2022 Mar; 135(2):295-310. PubMed ID: 35059894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.
    Pirone-Davies C; Prior N; von Aderkas P; Smith D; Hardie D; Friedman WE; Mathews S
    Ann Bot; 2016 May; 117(6):973-84. PubMed ID: 27045089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The signals to trigger the initiation of ovule enlargement are from the pollen tubes: The direct evidence.
    Zhong S; Zhang J; Qu LJ
    J Integr Plant Biol; 2017 Sep; 59(9):600-603. PubMed ID: 28815896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L.
    Fischer TC; Meller B; Kustatscher E; Butzmann R
    BMC Evol Biol; 2010 Nov; 10():337. PubMed ID: 21044353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of ovule number and flower size in wind-pollinated plants.
    Friedman J; Barrett SC
    Am Nat; 2011 Feb; 177(2):246-57. PubMed ID: 21460560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-Temporal Distribution of Cell Wall Components in the Placentas, Ovules and Female Gametophytes of
    Płachno BJ; Kapusta M; Świątek P; Banaś K; Miranda VFO; Bogucka-Kocka A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproductive biology of the "Brazilian pine" (Araucaria angustifolia-Araucariaceae): the pollen tube growth and the seed cone development.
    Kuhn SA; Nogueira FM; Schürer T; Mariath JEA
    Plant Reprod; 2024 Mar; 37(1):1-13. PubMed ID: 37449999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of reproductive resource allocation and pollen density on fertilization success in plants.
    Gillet EM; Gregorius HR
    BMC Ecol; 2020 May; 20(1):26. PubMed ID: 32359373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.