BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34559222)

  • 1. Hypoxia and TLR9 activation drive CXCL4 production in systemic sclerosis plasmacytoid dendritic cells via mtROS and HIF-2α.
    Ottria A; Zimmermann M; Paardekooper LM; Carvalheiro T; Vazirpanah N; Silva-Cardoso S; Affandi AJ; Chouri E; V D Kroef M; Tieland RG; Bekker CPJ; Wichers CGK; Rossato M; Mocholi-Gimeno E; Tekstra J; Ton E; van Laar JM; Cossu M; Beretta L; Garcia Perez S; Pandit A; Bonte-Mineur F; Reedquist KA; van den Bogaart G; Radstake TRDJ; Marut W
    Rheumatology (Oxford); 2022 May; 61(6):2682-2693. PubMed ID: 34559222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-α production in systemic sclerosis.
    Lande R; Lee EY; Palazzo R; Marinari B; Pietraforte I; Santos GS; Mattenberger Y; Spadaro F; Stefanantoni K; Iannace N; Dufour AM; Falchi M; Bianco M; Botti E; Bianchi L; Alvarez M; Riccieri V; Truchetet ME; C L Wong G; Chizzolini C; Frasca L
    Nat Commun; 2019 May; 10(1):1731. PubMed ID: 31043596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of type I interferon responses by mitochondria-derived reactive oxygen species in plasmacytoid dendritic cells.
    Agod Z; Fekete T; Budai MM; Varga A; Szabo A; Moon H; Boldogh I; Biro T; Lanyi A; Bacsi A; Pazmandi K
    Redox Biol; 2017 Oct; 13():633-645. PubMed ID: 28818792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8.
    Ah Kioon MD; Tripodo C; Fernandez D; Kirou KA; Spiera RF; Crow MK; Gordon JK; Barrat FJ
    Sci Transl Med; 2018 Jan; 10(423):. PubMed ID: 29321259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CXCL4 triggers monocytes and macrophages to produce PDGF-BB, culminating in fibroblast activation: Implications for systemic sclerosis.
    van der Kroef M; Carvalheiro T; Rossato M; de Wit F; Cossu M; Chouri E; Wichers CGK; Bekker CPJ; Beretta L; Vazirpanah N; Trombetta E; Radstake TRDJ; Angiolilli C
    J Autoimmun; 2020 Jul; 111():102444. PubMed ID: 32284212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CXCL4-RNA Complexes Circulate in Systemic Sclerosis and Amplify Inflammatory/Pro-Fibrotic Responses by Myeloid Dendritic Cells.
    Pietraforte I; Butera A; Gaddini L; Mennella A; Palazzo R; Campanile D; Stefanantoni K; Riccieri V; Lande R; Frasca L
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response: another role for CXCL4?
    van Bon L; Cossu M; Scharstuhl A; Pennings BW; Vonk MC; Vreman HJ; Lafyatis RL; van den Berg W; Wagener FA; Radstake TR
    Rheumatology (Oxford); 2016 Nov; 55(11):2066-2073. PubMed ID: 27411481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-CXCL4 Antibody Reactivity Is Present in Systemic Sclerosis (SSc) and Correlates with the SSc Type I Interferon Signature.
    Lande R; Mennella A; Palazzo R; Pietraforte I; Stefanantoni K; Iannace N; Butera A; Boirivant M; Pica R; Conrad C; Chizzolini C; Riccieri V; Frasca L
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32707718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis.
    van Bon L; Affandi AJ; Broen J; Christmann RB; Marijnissen RJ; Stawski L; Farina GA; Stifano G; Mathes AL; Cossu M; York M; Collins C; Wenink M; Huijbens R; Hesselstrand R; Saxne T; DiMarzio M; Wuttge D; Agarwal SK; Reveille JD; Assassi S; Mayes M; Deng Y; Drenth JP; de Graaf J; den Heijer M; Kallenberg CG; Bijl M; Loof A; van den Berg WB; Joosten LA; Smith V; de Keyser F; Scorza R; Lunardi C; van Riel PL; Vonk M; van Heerde W; Meller S; Homey B; Beretta L; Roest M; Trojanowska M; Lafyatis R; Radstake TR
    N Engl J Med; 2014 Jan; 370(5):433-43. PubMed ID: 24350901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel HIF-2α targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPR
    Yan Y; He M; Zhao L; Wu H; Zhao Y; Han L; Wei B; Ye D; Lv X; Wang Y; Yao W; Zhao H; Chen B; Jin Z; Wen J; Zhu Y; Yu T; Jin F; Wei M
    Cell Death Differ; 2022 Sep; 29(9):1769-1789. PubMed ID: 35301432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia.
    Neelam S; Brooks MM; Cammarata PR
    Mol Vis; 2013; 19():1-15. PubMed ID: 23335846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia-inducible factor-2α promotes fibrosis in non-alcoholic fatty liver disease by enhancing glutamine catabolism and inhibiting yes-associated protein phosphorylation in hepatic stellate cells.
    Yan R; Cai H; Zhou X; Bao G; Bai Z; Ge RL
    Front Endocrinol (Lausanne); 2024; 15():1344971. PubMed ID: 38501098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution to the peripheral vasculopathy and endothelial cell dysfunction by CXCL4 in Systemic Sclerosis.
    Jiang Z; Chen C; Yang S; He H; Zhu X; Liang M
    J Dermatol Sci; 2021 Oct; 104(1):63-73. PubMed ID: 34556381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-inducible factor-2α plays a role in mediating oesophagitis in GORD.
    Huo X; Agoston AT; Dunbar KB; Cipher DJ; Zhang X; Yu C; Cheng E; Zhang Q; Pham TH; Tambar UK; Bruick RK; Wang DH; Odze RD; Spechler SJ; Souza RF
    Gut; 2017 Sep; 66(9):1542-1554. PubMed ID: 27694141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple receptor tyrosine kinases regulate HIF-1alpha and HIF-2alpha in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors.
    Nilsson MB; Zage PE; Zeng L; Xu L; Cascone T; Wu HK; Saigal B; Zweidler-McKay PA; Heymach JV
    Oncogene; 2010 May; 29(20):2938-49. PubMed ID: 20208561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-Inducible Factor 2α Attenuates Renal Ischemia-Reperfusion Injury by Suppressing CD36-Mediated Lipid Accumulation in Dendritic Cells in a Mouse Model.
    Qu J; Li D; Jin J; Sun N; Wu J; Yang C; Wu L; Zhuang S; Wu H; Chen R; Ren Y; Zhong C; Ying L; Zhang Y; Yuan X; Zhang M
    J Am Soc Nephrol; 2023 Jan; 34(1):73-87. PubMed ID: 36719147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia Upregulates Estrogen Receptor β in Pulmonary Artery Endothelial Cells in a HIF-1α-Dependent Manner.
    Frump AL; Selej M; Wood JA; Albrecht M; Yakubov B; Petrache I; Lahm T
    Am J Respir Cell Mol Biol; 2018 Jul; 59(1):114-126. PubMed ID: 29394091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis.
    Dehn S; DeBerge M; Yeap XY; Yvan-Charvet L; Fang D; Eltzschig HK; Miller SD; Thorp EB
    J Immunol; 2016 Nov; 197(9):3639-3649. PubMed ID: 27671111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased activation of the hypoxia-inducible factor pathway in varicose veins.
    Lim CS; Kiriakidis S; Paleolog EM; Davies AH
    J Vasc Surg; 2012 May; 55(5):1427-39. PubMed ID: 22277691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of TLR agonists on the hypoxia-regulated transcription factor HIF-1alpha and dendritic cell maturation under normoxic conditions.
    Spirig R; Djafarzadeh S; Regueira T; Shaw SG; von Garnier C; Takala J; Jakob SM; Rieben R; Lepper PM
    PLoS One; 2010 Jun; 5(6):e0010983. PubMed ID: 20539755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.