These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34559241)
41. Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): Use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program. Trewin BJ; Pagendam DE; Johnson BJ; Paton C; Snoad N; Ritchie SA; Staunton KM; White BJ; Mitchell S; Beebe NW PLoS Negl Trop Dis; 2021 Jun; 15(6):e0009357. PubMed ID: 34097696 [TBL] [Abstract][Full Text] [Related]
42. A new approach to improve acoustic trapping effectiveness for Aedes aegypti (Diptera: Culicidae). Pantoja-Sánchez H; Vargas JF; Ruiz-López F; Rúa-Uribe G; Vélez V; Kline DL; Bernal XE J Vector Ecol; 2019 Dec; 44(2):216-222. PubMed ID: 31729803 [TBL] [Abstract][Full Text] [Related]
43. The main component of the scent of Kashiwagi GA; von Oppen S; Harburguer L; González-Audino P Bull Entomol Res; 2022 Dec; 112(6):837-846. PubMed ID: 35792561 [No Abstract] [Full Text] [Related]
44. Evidence of polyandry for Aedes aegypti in semifield enclosures. Helinski ME; Valerio L; Facchinelli L; Scott TW; Ramsey J; Harrington LC Am J Trop Med Hyg; 2012 Apr; 86(4):635-41. PubMed ID: 22492148 [TBL] [Abstract][Full Text] [Related]
45. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. Jeffery JA; Thi Yen N; Nam VS; Nghia le T; Hoffmann AA; Kay BH; Ryan PA PLoS Negl Trop Dis; 2009 Nov; 3(11):e552. PubMed ID: 19956588 [TBL] [Abstract][Full Text] [Related]
46. Semi-field evaluation of freestanding transfluthrin passive emanators and the BG sentinel trap as a "push-pull control strategy" against Aedes aegypti mosquitoes. Tambwe MM; Moore SJ; Chilumba H; Swai JK; Moore JD; Stica C; Saddler A Parasit Vectors; 2020 Jul; 13(1):392. PubMed ID: 32736580 [TBL] [Abstract][Full Text] [Related]
47. Dynamics of Aedes aegypti mating behaviour. Triana MF; Melo N Curr Opin Insect Sci; 2024 Oct; 65():101237. PubMed ID: 39047975 [TBL] [Abstract][Full Text] [Related]
48. Computational and experimental insights into the chemosensory navigation o Lutz EK; Grewal TS; Riffell JA Proc Biol Sci; 2019 Nov; 286(1915):20191495. PubMed ID: 31744443 [TBL] [Abstract][Full Text] [Related]
49. Verifying the efficiency of the Biogents Sentinel trap in the field and investigating microclimatic influences on responding Amos BA; Cardé RT J Vector Ecol; 2022 Dec; 47(2):166-170. PubMed ID: 36314670 [TBL] [Abstract][Full Text] [Related]
50. Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Tauxe GM; MacWilliam D; Boyle SM; Guda T; Ray A Cell; 2013 Dec; 155(6):1365-79. PubMed ID: 24315103 [TBL] [Abstract][Full Text] [Related]
51. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti. Fawaz EY; Allan SA; Bernier UR; Obenauer PJ; Diclaro JW J Vector Ecol; 2014 Dec; 39(2):347-54. PubMed ID: 25424264 [TBL] [Abstract][Full Text] [Related]
52. Waterproof, low-cost, long-battery-life sound trap for surveillance of male Aedes aegypti for rear-and-release mosquito control programmes. Rohde BB; Staunton KM; Zeak NC; Beebe N; Snoad N; Bondarenco A; Liddington C; Anderson JA; Xiang W; Mankin RW; Ritchie SA Parasit Vectors; 2019 Sep; 12(1):417. PubMed ID: 31488182 [TBL] [Abstract][Full Text] [Related]
53. Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Omondi WP; Owino EA; Odongo D; Mwangangi JM; Torto B; Tchouassi DP Acta Trop; 2019 Dec; 200():105163. PubMed ID: 31494122 [TBL] [Abstract][Full Text] [Related]
54. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Pullmann-Lindsley H; Huff RM; Boyi J; Pitts RJ PLoS One; 2024; 19(5):e0302496. PubMed ID: 38709760 [TBL] [Abstract][Full Text] [Related]
55. Male sexual history influences female fertility and re-mating incidence in the mosquito vector Aedes aegypti (Diptera: Culicidae). Felipe Ramírez-Sánchez L; Camargo C; Avila FW J Insect Physiol; 2020; 121():104019. PubMed ID: 32032591 [TBL] [Abstract][Full Text] [Related]
56. The Impact of Temperature and Body Size on Fundamental Flight Tone Variation in the Mosquito Vector Aedes aegypti (Diptera: Culicidae): Implications for Acoustic Lures. Villarreal SM; Winokur O; Harrington L J Med Entomol; 2017 Sep; 54(5):1116-1121. PubMed ID: 28402550 [TBL] [Abstract][Full Text] [Related]
57. Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti. Saratha R; Mathew N Parasitol Res; 2016 Apr; 115(4):1529-36. PubMed ID: 26693718 [TBL] [Abstract][Full Text] [Related]
58. Lure, retain, and catch malaria mosquitoes. How heat and humidity improve odour-baited trap performance. Cribellier A; Spitzen J; Fairbairn H; van de Geer C; van Leeuwen JL; Muijres FT Malar J; 2020 Oct; 19(1):357. PubMed ID: 33028362 [TBL] [Abstract][Full Text] [Related]
59. Field validation of a transcriptional assay for the prediction of age of uncaged Aedes aegypti mosquitoes in Northern Australia. Hugo LE; Cook PE; Johnson PH; Rapley LP; Kay BH; Ryan PA; Ritchie SA; O'Neill SL PLoS Negl Trop Dis; 2010 Feb; 4(2):e608. PubMed ID: 20186322 [TBL] [Abstract][Full Text] [Related]
60. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. McMeniman CJ; Corfas RA; Matthews BJ; Ritchie SA; Vosshall LB Cell; 2014 Feb; 156(5):1060-71. PubMed ID: 24581501 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]