These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34559392)
1. Evaluation of Blend Production of Cellulases and Xylanases Using Pretreated and Recycled Carnauba Straw. da Silva FL; Dos Santos DA; de Oliveira Campos A; Magalhães ERB; Dos Santos ES Appl Biochem Biotechnol; 2022 Feb; 194(2):901-913. PubMed ID: 34559392 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
3. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885 [TBL] [Abstract][Full Text] [Related]
4. Biochemical properties of cellulolytic and xylanolytic enzymes from Singh B; Bala A; Anu ; Alokika ; Kumar V; Singh D Prep Biochem Biotechnol; 2022; 52(2):197-209. PubMed ID: 34010094 [TBL] [Abstract][Full Text] [Related]
5. Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bala A; Singh B Bioprocess Biosyst Eng; 2016 Jan; 39(1):181-91. PubMed ID: 26581490 [TBL] [Abstract][Full Text] [Related]
6. Investigating process parameters to enhance (hemi)cellulolytic enzymes activity produced by Trichoderma reesei RUT-C30 using deoiled oil palm mesocarp fiber in solid-state fermentation. Al-Qassab AA; Zakaria MR; Yunus R; Salleh MAM; Mokhtar MN Int J Biol Macromol; 2024 Sep; 276(Pt 2):134030. PubMed ID: 39038578 [TBL] [Abstract][Full Text] [Related]
7. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Xylanase and Cellulase Produced by a Newly Isolated Aspergillus fumigatus N2 and Its Efficient Saccharification of Barley Straw. Lin C; Shen Z; Qin W Appl Biochem Biotechnol; 2017 Jun; 182(2):559-569. PubMed ID: 27914020 [TBL] [Abstract][Full Text] [Related]
9. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292 [TBL] [Abstract][Full Text] [Related]
10. Examining the potential of plasma-assisted pretreated wheat straw for enzyme production by Trichoderma reesei. Rodriguez-Gomez D; Lehmann L; Schultz-Jensen N; Bjerre AB; Hobley TJ Appl Biochem Biotechnol; 2012 Apr; 166(8):2051-63. PubMed ID: 22415783 [TBL] [Abstract][Full Text] [Related]
11. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. Camassola M; Dillon AJ J Appl Microbiol; 2007 Dec; 103(6):2196-204. PubMed ID: 18045402 [TBL] [Abstract][Full Text] [Related]
12. Measurement of Cellulase and Xylanase Activities in Trichoderma reesei. Meng QS; Zhang F; Liu CG; Bai FW; Zhao XQ Methods Mol Biol; 2021; 2234():135-146. PubMed ID: 33165786 [TBL] [Abstract][Full Text] [Related]
13. Controlled preparation of cellulases with xylanolytic enzymes from Trichoderma reesei (Hypocrea jecorina) by continuous-feed cultivation using soluble sugars. Ike M; Park JY; Tabuse M; Tokuyasu K Biosci Biotechnol Biochem; 2013; 77(1):161-6. PubMed ID: 23291768 [TBL] [Abstract][Full Text] [Related]
14. Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. de Cassia Pereira J; Paganini Marques N; Rodrigues A; Brito de Oliveira T; Boscolo M; da Silva R; Gomes E; Bocchini Martins DA J Appl Microbiol; 2015 Apr; 118(4):928-39. PubMed ID: 25644433 [TBL] [Abstract][Full Text] [Related]
15. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Pathak P; Bhardwaj NK; Singh AK Appl Biochem Biotechnol; 2014 Apr; 172(8):3776-97. PubMed ID: 24574249 [TBL] [Abstract][Full Text] [Related]
16. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Leite P; Salgado JM; Venâncio A; Domínguez JM; Belo I Bioresour Technol; 2016 Aug; 214():737-746. PubMed ID: 27209456 [TBL] [Abstract][Full Text] [Related]
18. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. Li Y; Peng X; Chen H J Biosci Bioeng; 2013 Oct; 116(4):493-8. PubMed ID: 23676362 [TBL] [Abstract][Full Text] [Related]
19. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
20. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]