These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34559523)

  • 41. Transamidation-Driven Molecular Pumps.
    Binks L; Tian C; Fielden SDP; Vitorica-Yrezabal IJ; Leigh DA
    J Am Chem Soc; 2022 Aug; 144(34):15838-15844. PubMed ID: 35979923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Synthesis and reaction of hypervalent λ3-iodane-crown ether complexes].
    Miyamoto K
    Yakugaku Zasshi; 2011 Apr; 131(4):545-52. PubMed ID: 21467794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient potassium-ion-templated synthesis and controlled destruction of [2]rotaxanes based on cascade complexes.
    Han T; Chen CF
    J Org Chem; 2008 Oct; 73(19):7735-42. PubMed ID: 18759481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crown Ether-Based Supramolecular Polymers: From Synthesis to Self-Assembly.
    Duan Z; Xu F; Huang X; Qian Y; Li H; Tian W
    Macromol Rapid Commun; 2022 Jul; 43(14):e2100775. PubMed ID: 34882882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pentafluorophenyl Esters as Exchangeable Stoppers for the Construction of Photoactive [2]Rotaxanes.
    Rémy M; Nierengarten I; Park B; Holler M; Hahn U; Nierengarten JF
    Chemistry; 2021 Jun; 27(33):8492-8499. PubMed ID: 33826199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles.
    Berná J; Alajarín M; Orenes RA
    J Am Chem Soc; 2010 Aug; 132(31):10741-7. PubMed ID: 20681706
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stepwise, Protecting Group Free Synthesis of [4]Rotaxanes.
    Lewis JE; Winn J; Goldup SM
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28075366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supramolecular Gel Based on Crown-Ether-Appended Dynamic Covalent Macrocycles.
    Ge Y; Gong H; Shang J; Jin L; Pan T; Zhang Q; Dong S; Wang Y; Qi Z
    Macromol Rapid Commun; 2019 Sep; 40(17):e1800731. PubMed ID: 30672634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic and electrochemical study of tailor-made crown ethers for redox-switchable (pseudo)rotaxanes.
    Hupatz H; Gaedke M; Schröder HV; Beerhues J; Valkonen A; Klautzsch F; Müller S; Witte F; Rissanen K; Sarkar B; Schalley CA
    Beilstein J Org Chem; 2020; 16():2576-2588. PubMed ID: 33133289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Construction of rotacatenanes using rotaxane and catenane frameworks.
    Xue W; Li Z; Liu G; Chen X; Li T; Liu SH; Yin J
    Org Biomol Chem; 2014 Jul; 12(27):4862-71. PubMed ID: 24875591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A very efficient synthesis of a mannosyl orthoester [2]rotaxane and mannosidic [2]rotaxanes.
    Coutrot F; Busseron E; Montero JL
    Org Lett; 2008 Mar; 10(5):753-6. PubMed ID: 18232696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions in pseudorotoxanes based on crown ether-secondary ammonium motifs. A theoretical study.
    Ramero C; Guadarrama P; Fomine S
    J Mol Model; 2005 Dec; 12(1):85-92. PubMed ID: 16096804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tandem mass spectrometry for the analysis of self-sorted pseudorotaxanes: the effects of Coulomb interactions.
    Jiang W; Schalley CA
    J Mass Spectrom; 2010 Jul; 45(7):788-98. PubMed ID: 20544691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BP23C7: high-yield synthesis and application in constructing [3]rotaxanes and responsive pseudo[2]rotaxanes.
    Prakashni M; Dasgupta S
    Org Biomol Chem; 2024 Feb; 22(9):1871-1884. PubMed ID: 38349013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides.
    Acevedo-Jake A; Ball AT; Galli M; Kukwikila M; Denis M; Singleton DG; Tavassoli A; Goldup SM
    J Am Chem Soc; 2020 Apr; 142(13):5985-5990. PubMed ID: 32155338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequence isomerism in [3]rotaxanes.
    Fuller AM; Leigh DA; Lusby PJ
    J Am Chem Soc; 2010 Apr; 132(13):4954-9. PubMed ID: 20230033
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.
    Crowley JD; Hänni KD; Leigh DA; Slawin AM
    J Am Chem Soc; 2010 Apr; 132(14):5309-14. PubMed ID: 20334379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle.
    Lohmann F; Weigandt J; Valero J; Famulok M
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10372-6. PubMed ID: 25078433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects on Rotational Dynamics of Azo and Hydrazodicarboxamide-Based Rotaxanes.
    Saura-Sanmartin A; Martinez-Espin JS; Martinez-Cuezva A; Alajarin M; Berna J
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28657603
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A [2]Rotaxane-Based Circularly Polarized Luminescence Switch.
    David AHG; Casares R; Cuerva JM; Campaña AG; Blanco V
    J Am Chem Soc; 2019 Nov; 141(45):18064-18074. PubMed ID: 31638802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.