These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34559647)

  • 1. Localized Measurement of a Sub-Nanosecond Shockwave Pressure Rise Time.
    Petelin J; Lokar Z; Horvat D; Petkovsek R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):369-376. PubMed ID: 34559647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast measurement of laser-induced shock waves.
    Lokar Ž; Horvat D; Petelin J; Petkovšek R
    Photoacoustics; 2023 Apr; 30():100465. PubMed ID: 36874590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields.
    Parsons JE; Cain CA; Fowlkes JB
    J Acoust Soc Am; 2006 Mar; 119(3):1432-40. PubMed ID: 16583887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-frame multi-exposure shock wave imaging and pressure measurements.
    Mur J; Reuter F; Kočica JJ; Lokar Ž; Petelin J; Agrež V; Ohl CD; Petkovšek R
    Opt Express; 2022 Oct; 30(21):37664-37674. PubMed ID: 36258350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct numerical simulation of the initial stage of a thermally induced microcavitation in a water-rich biotissue triggered by a nanosecond pulsed laser.
    Wen SB; Ly K; Bhaskar A; Schmidt MS; Thomas RJ
    J Biomed Opt; 2017 May; 22(5):56002. PubMed ID: 28467537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cavitation activity by different shockwave pulsing regimes.
    Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M
    Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optoacoustic tones generated by nanosecond laser pulses can cover the entire human hearing range.
    Lengert L; Lohmann H; Johannsmeier S; Ripken T; Maier H; Heisterkamp A; Kalies S
    J Biophotonics; 2022 Nov; 15(11):e202200161. PubMed ID: 36328060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses.
    Genc SL; Ma H; Venugopalan V
    Appl Phys Lett; 2014 Aug; 105(6):063701. PubMed ID: 25278618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.
    Shephard JD; Couny F; Russell PS; Jones JD; Knight JC; Hand DP
    Appl Opt; 2005 Jul; 44(21):4582-8. PubMed ID: 16047910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements.
    Rad AJ; Ueberle F; Krueger K
    Rev Sci Instrum; 2014 Jan; 85(1):014902. PubMed ID: 24517798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application systems for intracorporeal laser-induced shockwave lithotripsy using the Nd:YAG Q-switched laser.
    Frank F; Eichenlaub M; Hessel S; Wondrazek F
    J Clin Laser Med Surg; 1990 Oct; 8(5):51-5. PubMed ID: 10150126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscale nanosecond laser-induced optical breakdown in water.
    Kudryashov SI; Zvorykin VD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036404. PubMed ID: 18851166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.
    Smith N; Sankin GN; Simmons WN; Nanke R; Fehre J; Zhong P
    Rev Sci Instrum; 2012 Jan; 83(1):014301. PubMed ID: 22299970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone.
    Zhou Y; Zhai L; Simmons R; Zhong P
    J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passively mode-locked single-polarization microstructure fiber laser.
    Ortaç B; Lecaplain C; Hideur A; Schreiber T; Limpert J; Tünnermann A
    Opt Express; 2008 Feb; 16(3):2122-8. PubMed ID: 18542292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser.
    Zhao X; Zheng Z; Liu L; Wang Q; Chen H; Liu J
    Opt Express; 2012 Nov; 20(23):25584-9. PubMed ID: 23187376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 240 W high-average-power square-shaped nanosecond all-fiber-integrated laser with near diffraction-limited beam quality.
    Yu H; Tao R; Wang X; Zhou P; Chen J
    Appl Opt; 2014 Oct; 53(28):6409-13. PubMed ID: 25322225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On fiber optic probe hydrophone measurements in a cavitating liquid.
    Zijlstra A; Ohl CD
    J Acoust Soc Am; 2008 Jan; 123(1):29-32. PubMed ID: 18177133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.