These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 34560046)
1. Physical behavior of KR-12 peptide on solid surfaces and Langmuir-Blodgett lipid films: Complementary approaches to its antimicrobial mode against S. aureus. Chanci K; Diosa J; Giraldo MA; Mesa M Biochim Biophys Acta Biomembr; 2022 Feb; 1864(1):183779. PubMed ID: 34560046 [TBL] [Abstract][Full Text] [Related]
2. Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. Jacob B; Park IS; Bang JK; Shin SY J Pept Sci; 2013 Nov; 19(11):700-7. PubMed ID: 24105706 [TBL] [Abstract][Full Text] [Related]
3. Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity. Costa F; Maia S; Gomes J; Gomes P; Martins MC Acta Biomater; 2014 Aug; 10(8):3513-21. PubMed ID: 24631659 [TBL] [Abstract][Full Text] [Related]
4. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Dennison SR; Howe J; Morton LH; Brandenburg K; Harris F; Phoenix DA Biochem Biophys Res Commun; 2006 Sep; 347(4):1006-10. PubMed ID: 16857163 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Characterization of Peptide-Chitosan Conjugates (PepChis) with Lipid Bilayer Affinity and Antibacterial Activity. Petrin THC; Fadel V; Martins DB; Dias SA; Cruz A; Sergio LM; Arcisio-Miranda M; Castanho MARB; Dos Santos Cabrera MP Biomacromolecules; 2019 Jul; 20(7):2743-2753. PubMed ID: 31184862 [TBL] [Abstract][Full Text] [Related]
7. Marsupial and monotreme cathelicidins display antimicrobial activity, including against methicillin-resistant Staphylococcus aureus. Peel E; Cheng Y; Djordjevic JT; Kuhn M; Sorrell T; Belov K Microbiology (Reading); 2017 Oct; 163(10):1457-1465. PubMed ID: 28949902 [TBL] [Abstract][Full Text] [Related]
8. Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Epand RM; Epand RF; Arnusch CJ; Papahadjopoulos-Sternberg B; Wang G; Shai Y Biochim Biophys Acta; 2010 Jun; 1798(6):1272-80. PubMed ID: 20302840 [TBL] [Abstract][Full Text] [Related]
9. The antimicrobial fibupeptide lugdunin forms water-filled channel structures in lipid membranes. Ruppelt D; Trollmann MFW; Dema T; Wirtz SN; Flegel H; Mönnikes S; Grond S; Böckmann RA; Steinem C Nat Commun; 2024 Apr; 15(1):3521. PubMed ID: 38664456 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk. Yang S; Li J; Aweya JJ; Yuan Z; Weng W; Zhang Y; Liu GM Int J Food Microbiol; 2020 Dec; 335():108891. PubMed ID: 32977153 [TBL] [Abstract][Full Text] [Related]
11. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Juba ML; Porter DK; Williams EH; Rodriguez CA; Barksdale SM; Bishop BM Biochim Biophys Acta; 2015 May; 1848(5):1081-91. PubMed ID: 25660753 [TBL] [Abstract][Full Text] [Related]
12. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Costa FM; Maia SR; Gomes PA; Martins MC Biomaterials; 2015 Jun; 52():531-8. PubMed ID: 25818458 [TBL] [Abstract][Full Text] [Related]
13. Structure-activity relationships of a snake cathelicidin-related peptide, BF-15. Chen W; Yang B; Zhou H; Sun L; Dou J; Qian H; Huang W; Mei Y; Han J Peptides; 2011 Dec; 32(12):2497-503. PubMed ID: 22008732 [TBL] [Abstract][Full Text] [Related]
14. Film-forming process and biocide assessment of high-molecular-weight chitosan as determined by combined ATR-FTIR spectroscopy and antimicrobial assays. Fernandez-Saiz P; Ocio MJ; Lagaron JM Biopolymers; 2006 Dec; 83(6):577-83. PubMed ID: 16929529 [TBL] [Abstract][Full Text] [Related]
15. Molecular Cloning, Functional and Biophysical Characterization of an Antimicrobial Peptide from Rhizosphere Soil. Boparai JK; Nancy ; Sharma PK Protein Pept Lett; 2021; 28(11):1312-1322. PubMed ID: 34477502 [TBL] [Abstract][Full Text] [Related]
16. Adhesive Antimicrobial Peptides Containing 3,4-Dihydroxy-L-Phenylalanine Residues for Direct One-Step Surface Coating. Hwang YE; Im S; Kim H; Sohn JH; Cho BK; Cho JH; Sung BH; Kim SC Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769345 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relationship of buffalo antibacterial hepcidin analogs. Chanu KV; Kumar A; Kumar S Indian J Biochem Biophys; 2011 Oct; 48(5):325-30. PubMed ID: 22165290 [TBL] [Abstract][Full Text] [Related]
18. Immobilization and orientation-dependent activity of a naturally occurring antimicrobial peptide. Soares JW; Kirby R; Doherty LA; Meehan A; Arcidiacono S J Pept Sci; 2015 Aug; 21(8):669-79. PubMed ID: 26018607 [TBL] [Abstract][Full Text] [Related]
19. The design of a cell-selective fowlicidin-1-derived peptide with both antimicrobial and anti-inflammatory activities. Rajasekaran G; Kumar SD; Yang S; Shin SY Eur J Med Chem; 2019 Nov; 182():111623. PubMed ID: 31473417 [TBL] [Abstract][Full Text] [Related]