BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34560228)

  • 1. Mechanistic insights into genetic susceptibility to prostate cancer.
    Tian P; Zhong M; Wei GH
    Cancer Lett; 2021 Dec; 522():155-163. PubMed ID: 34560228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer.
    Jin HJ; Jung S; DebRoy AR; Davuluri RV
    Oncotarget; 2016 Aug; 7(34):54616-54626. PubMed ID: 27409348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression.
    Tian Y; Dong D; Wang Z; Wu L; Park JY; ; Wei GH; Wang L
    Am J Hum Genet; 2023 Aug; 110(8):1289-1303. PubMed ID: 37541187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic enrichment analysis of potentially functional regions for 103 prostate cancer risk-associated loci.
    Chen H; Yu H; Wang J; Zhang Z; Gao Z; Chen Z; Lu Y; Liu W; Jiang D; Zheng SL; Wei GH; Issacs WB; Feng J; Xu J
    Prostate; 2015 Sep; 75(12):1264-76. PubMed ID: 26015065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive functional annotation of 77 prostate cancer risk loci.
    Hazelett DJ; Rhie SK; Gaddis M; Yan C; Lakeland DL; Coetzee SG; ; ; Henderson BE; Noushmehr H; Cozen W; Kote-Jarai Z; Eeles RA; Easton DF; Haiman CA; Lu W; Farnham PJ; Coetzee GA
    PLoS Genet; 2014 Jan; 10(1):e1004102. PubMed ID: 24497837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer.
    Ahmed M; Soares F; Xia JH; Yang Y; Li J; Guo H; Su P; Tian Y; Lee HJ; Wang M; Akhtar N; Houlahan KE; Bosch A; Zhou S; Mazrooei P; Hua JT; Chen S; Petricca J; Zeng Y; Davies A; Fraser M; Quigley DA; Feng FY; Boutros PC; Lupien M; Zoubeidi A; Wang L; Walsh MJ; Wang T; Ren S; Wei GH; He HH
    Nat Commun; 2021 Mar; 12(1):1781. PubMed ID: 33741908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus.
    Zhang X; Cowper-Sal lari R; Bailey SD; Moore JH; Lupien M
    Genome Res; 2012 Aug; 22(8):1437-46. PubMed ID: 22665440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation and cis-regulation of gene expression by prostate cancer risk SNPs.
    Dai JY; Wang X; Wang B; Sun W; Jordahl KM; Kolb S; Nyame YA; Wright JL; Ostrander EA; Feng Z; Stanford JL
    PLoS Genet; 2020 Mar; 16(3):e1008667. PubMed ID: 32226005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops.
    Guo Y; Perez AA; Hazelett DJ; Coetzee GA; Rhie SK; Farnham PJ
    Genome Biol; 2018 Oct; 19(1):160. PubMed ID: 30296942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of prostate cancer risk with SNPs in regions containing androgen receptor binding sites captured by ChIP-On-chip analyses.
    Lu Y; Sun J; Kader AK; Kim ST; Kim JW; Liu W; Sun J; Lu D; Feng J; Zhu Y; Jin T; Zhang Z; Dimitrov L; Lowey J; Campbell K; Suh E; Duggan D; Carpten J; Trent JM; Gronberg H; Zheng SL; Isaacs WB; Xu J
    Prostate; 2012 Mar; 72(4):376-85. PubMed ID: 21671247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer.
    Zuber V; Bettella F; Witoelar A; ; ; ; ; Andreassen OA; Mills IG; Urbanucci A
    BMC Genomics; 2017 Mar; 18(1):270. PubMed ID: 28359301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post genome-wide association studies functional characterization of prostate cancer risk loci.
    Jiang J; Cui W; Vongsangnak W; Hu G; Shen B
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S9. PubMed ID: 24564736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus.
    Gao P; Xia JH; Sipeky C; Dong XM; Zhang Q; Yang Y; Zhang P; Cruz SP; Zhang K; Zhu J; Lee HM; Suleman S; Giannareas N; Liu S; ; Tammela TLJ; Auvinen A; Wang X; Huang Q; Wang L; Manninen A; Vaarala MH; Wang L; Schleutker J; Wei GH
    Cell; 2018 Jul; 174(3):576-589.e18. PubMed ID: 30033361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding.
    Huang Q; Whitington T; Gao P; Lindberg JF; Yang Y; Sun J; Väisänen MR; Szulkin R; Annala M; Yan J; Egevad LA; Zhang K; Lin R; Jolma A; Nykter M; Manninen A; Wiklund F; Vaarala MH; Visakorpi T; Xu J; Taipale J; Wei GH
    Nat Genet; 2014 Feb; 46(2):126-35. PubMed ID: 24390282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin interactions and candidate genes at ten prostate cancer risk loci.
    Du M; Tillmans L; Gao J; Gao P; Yuan T; Dittmar RL; Song W; Yang Y; Sahr N; Wang T; Wei GH; Thibodeau SN; Wang L
    Sci Rep; 2016 Mar; 6():23202. PubMed ID: 26979803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Nucleotide Polymorphisms Sequencing Identifies Candidate Functional Variants at Prostate Cancer Risk Loci.
    Zhang P; Tillmans LS; Thibodeau SN; Wang L
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Networks of intergenic long-range enhancers and snpRNAs drive castration-resistant phenotype of prostate cancer and contribute to pathogenesis of multiple common human disorders.
    Glinskii AB; Ma S; Ma J; Grant D; Lim CU; Guest I; Sell S; Buttyan R; Glinsky GV
    Cell Cycle; 2011 Oct; 10(20):3571-97. PubMed ID: 22067658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through lncRNA PCAT19.
    Hua JT; Ahmed M; Guo H; Zhang Y; Chen S; Soares F; Lu J; Zhou S; Wang M; Li H; Larson NB; McDonnell SK; Patel PS; Liang Y; Yao CQ; van der Kwast T; Lupien M; Feng FY; Zoubeidi A; Tsao MS; Thibodeau SN; Boutros PC; He HH
    Cell; 2018 Jul; 174(3):564-575.e18. PubMed ID: 30033362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prostate cancer risk variant rs55958994 regulates multiple gene expression through extreme long-range chromatin interaction to control tumor progression.
    Qian Y; Zhang L; Cai M; Li H; Xu H; Yang H; Zhao Z; Rhie SK; Farnham PJ; Shi J; Lu W
    Sci Adv; 2019 Jul; 5(7):eaaw6710. PubMed ID: 31328168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression.
    Gallagher MD; Posavi M; Huang P; Unger TL; Berlyand Y; Gruenewald AL; Chesi A; Manduchi E; Wells AD; Grant SFA; Blobel GA; Brown CD; Chen-Plotkin AS
    Am J Hum Genet; 2017 Nov; 101(5):643-663. PubMed ID: 29056226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.