These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34560480)

  • 1. Machine learning-based biomarkers identification from toxicogenomics - Bridging to regulatory relevant phenotypic endpoints.
    Rahman SM; Lan J; Kaeli D; Dy J; Alshawabkeh A; Gu AZ
    J Hazard Mater; 2022 Feb; 423(Pt B):127141. PubMed ID: 34560480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database.
    Sasaki YF; Sekihashi K; Izumiyama F; Nishidate E; Saga A; Ishida K; Tsuda S
    Crit Rev Toxicol; 2000 Nov; 30(6):629-799. PubMed ID: 11145306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants.
    Lan J; Gou N; Rahman SM; Gao C; He M; Gu AZ
    Environ Sci Technol; 2016 Mar; 50(6):3202-14. PubMed ID: 26855253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds.
    Qu M; Xu H; Li W; Chen J; Zhang Y; Xu B; Li Z; Liu T; Guo L; Xie J
    Arch Toxicol; 2021 Nov; 95(11):3559-3573. PubMed ID: 34510228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods.
    Waters MD; Jackson M; Lea I
    Mutat Res; 2010 Dec; 705(3):184-200. PubMed ID: 20399889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative and mechanistic genotoxicity assessment of nanomaterials via a quantitative toxicogenomics approach across multiple species.
    Lan J; Gou N; Gao C; He M; Gu AZ
    Environ Sci Technol; 2014 Nov; 48(21):12937-45. PubMed ID: 25338269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel prediction models for genotoxicity based on biomarker genes in human HepaRG™ cells.
    Thienpont A; Verhulst S; Van Grunsven LA; Rogiers V; Vanhaecke T; Mertens B
    ALTEX; 2023; 40(2):271-286. PubMed ID: 36343114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop.
    Kirkland D; Pfuhler S; Tweats D; Aardema M; Corvi R; Darroudi F; Elhajouji A; Glatt H; Hastwell P; Hayashi M; Kasper P; Kirchner S; Lynch A; Marzin D; Maurici D; Meunier JR; Müller L; Nohynek G; Parry J; Parry E; Thybaud V; Tice R; van Benthem J; Vanparys P; White P
    Mutat Res; 2007 Mar; 628(1):31-55. PubMed ID: 17293159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? II. Construction and analysis of a consolidated database.
    Kirkland D; Zeiger E; Madia F; Corvi R
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Dec; 775-776():69-80. PubMed ID: 25435357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in silico genetic toxicity screening of flavor compounds and other ingredients in tobacco products with emphasis on ENDS.
    Hung PH; Savidge M; De M; Kang JC; Healy SM; Valerio LG
    J Appl Toxicol; 2020 Nov; 40(11):1566-1587. PubMed ID: 32662109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.
    Guan D; Fan K; Spence I; Matthews S
    Regul Toxicol Pharmacol; 2018 Apr; 94():8-15. PubMed ID: 29337192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of toxicogenomics to study mechanisms of genotoxicity and carcinogenicity.
    Ellinger-Ziegelbauer H; Aubrecht J; Kleinjans JC; Ahr HJ
    Toxicol Lett; 2009 Apr; 186(1):36-44. PubMed ID: 18822359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Carcinogenome Project: In Vitro Gene Expression Profiling of Chemical Perturbations to Predict Long-Term Carcinogenicity.
    Li A; Lu X; Natoli T; Bittker J; Sipes NS; Subramanian A; Auerbach S; Sherr DH; Monti S
    Environ Health Perspect; 2019 Apr; 127(4):47002. PubMed ID: 30964323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis.
    Lan J; Rahman SM; Gou N; Jiang T; Plewa MJ; Alshawabkeh A; Gu AZ
    Environ Sci Technol; 2018 Jun; 52(11):6565-6575. PubMed ID: 29660283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.
    Rieswijk L; Brauers KJ; Coonen ML; Jennen DG; van Breda SG; Kleinjans JC
    Mutagenesis; 2016 Sep; 31(5):603-15. PubMed ID: 27338304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies.
    Ellinger-Ziegelbauer H; Gmuender H; Bandenburg A; Ahr HJ
    Mutat Res; 2008 Jan; 637(1-2):23-39. PubMed ID: 17689568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicogenomics discrimination of potential hepatocarcinogenicity of non-genotoxic compounds in rat liver.
    Yamada F; Sumida K; Uehara T; Morikawa Y; Yamada H; Urushidani T; Ohno Y
    J Appl Toxicol; 2013 Nov; 33(11):1284-93. PubMed ID: 22806939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Generalizability of the MultiFlow ® DNA Damage Assay and Several Companion Machine Learning Models With a Set of 103 Diverse Test Chemicals.
    Bryce SM; Bernacki DT; Smith-Roe SL; Witt KL; Bemis JC; Dertinger SD
    Toxicol Sci; 2018 Mar; 162(1):146-166. PubMed ID: 29106658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.
    Liu Z; Kelly R; Fang H; Ding D; Tong W
    Chem Res Toxicol; 2011 Jul; 24(7):1062-70. PubMed ID: 21627106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.