BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34560483)

  • 1. Structural and functional characterization of a novel biosurfactant from Bacillus sp. IITD106.
    Zargar AN; Lymperatou A; Skiadas I; Kumar M; Srivastava P
    J Hazard Mater; 2022 Feb; 423(Pt B):127201. PubMed ID: 34560483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
    Zhang J; Xue Q; Gao H; Lai H; Wang P
    Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of biosurfactant produced in response to petroleum crude oil stress by Bacillus sp. WD22 in marine environment.
    Goveas LC; Selvaraj R; Sajankila SP
    Braz J Microbiol; 2022 Dec; 53(4):2015-2025. PubMed ID: 36053434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and Application of Biosurfactant Produced by
    Ali N; Wang F; Xu B; Safdar B; Ullah A; Naveed M; Wang C; Rashid MT
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery.
    Sharma J; Kapley A; Sundar D; Srivastava P
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112453. PubMed ID: 35305323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100.
    Zargar AN; Mishra S; Kumar M; Srivastava P
    PLoS One; 2022; 17(4):e0264202. PubMed ID: 35421133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Oil Recovery using a Combination of Biosurfactants.
    Nissar Zargar A; Patil N; Kumar M; Srivastava P
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35723476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermophilic Clostridium sp. N-4 produced a glycoprotein biosurfactant that enhanced recovery of residual oil at 96 °C in lab studies.
    Arora P; Kshirsagar PR; Rana DP; Dhakephalkar PK
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110372. PubMed ID: 31369953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation.
    Phulpoto IA; Yu Z; Hu B; Wang Y; Ndayisenga F; Li J; Liang H; Qazi MA
    Microb Cell Fact; 2020 Jul; 19(1):145. PubMed ID: 32690027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.
    Dhasayan A; Kiran GS; Selvin J
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2571-84. PubMed ID: 25326183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation.
    Dadrasnia A; Ismail S
    Int J Environ Res Public Health; 2015 Aug; 12(8):9848-63. PubMed ID: 26295402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.
    Al-Wahaibi Y; Joshi S; Al-Bahry S; Elshafie A; Al-Bemani A; Shibulal B
    Colloids Surf B Biointerfaces; 2014 Feb; 114():324-33. PubMed ID: 24240116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosurfactant from endophytic Bacillus pumilus 2A: physicochemical characterization, production and optimization and potential for plant growth promotion.
    Marchut-Mikołajczyk O; Drożdżyński P; Polewczyk A; Smułek W; Antczak T
    Microb Cell Fact; 2021 Feb; 20(1):40. PubMed ID: 33557838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B.
    Joshi S; Bharucha C; Desai AJ
    Bioresour Technol; 2008 Jul; 99(11):4603-8. PubMed ID: 17855083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.
    Aparna A; Srinikethan G; Smitha H
    Colloids Surf B Biointerfaces; 2012 Jun; 95():23-9. PubMed ID: 22445235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.
    Jemil N; Ben Ayed H; Hmidet N; Nasri M
    World J Microbiol Biotechnol; 2016 Nov; 32(11):175. PubMed ID: 27628335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, Optimization, and Structural Characterization of Glycolipid Biosurfactant Produced by Marine Isolate Shewanella algae B12 and Evaluation of Its Antimicrobial and Anti-biofilm Activity.
    Gharaei S; Ohadi M; Hassanshahian M; Porsheikhali S; Forootanfar H
    Appl Biochem Biotechnol; 2022 Apr; 194(4):1755-1774. PubMed ID: 34982373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a biosurfactant producing strain: Bacillus subtilis HOB2.
    Haddad NI; Wang J; Mu B
    Protein Pept Lett; 2009; 16(1):7-13. PubMed ID: 19149667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene tolerance.
    Ray M; Kumar V; Banerjee C; Gupta P; Singh S; Singh A
    Ecotoxicol Environ Saf; 2021 Jan; 208():111621. PubMed ID: 33396141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and potential application of efficient biosurfactant produced by Pseudomonas sp. KZ1 strain.
    Zdarta A; Smułek W; Trzcińska A; Cybulski Z; Kaczorek E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(2):110-117. PubMed ID: 30614383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.