These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34560664)

  • 1. Validating an Adjustment to the Intermittent Critical Power Model for Elite Cyclists-Modeling W' Balance During World Cup Team Pursuit Performances.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2022 Feb; 17(2):170-175. PubMed ID: 34560664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of W' Recovery Kinetics in High Performance Cyclists-Modeling Intermittent Work Capacity.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2018 Jul; 13(6):724-728. PubMed ID: 29035607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Power, Work Capacity, and Recovery Characteristics of Team-Pursuit Cyclists.
    Pugh CF; Beaven CM; Ferguson RA; Driller MW; Palmer CD; Paton CD
    Int J Sports Physiol Perform; 2022 Nov; 17(11):1606-1613. PubMed ID: 36068071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Critical Power in Elite Cyclists: Questioning the Validity of the 3-Minute All-Out Test.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2017 Jul; 12(6):783-787. PubMed ID: 27834562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for Dynamic Changes in the Power-Duration Relationship Improves the Accuracy of W' Balance Modeling.
    Black MI; Skiba PF; Wylie LJ; Lewis J; Jones AM; Vanhatalo A
    Med Sci Sports Exerc; 2023 Feb; 55(2):235-244. PubMed ID: 36094337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM; Ashtiani F; Mocko GM; Vahidi A; Hutchison RE
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Intermittent Cycling Performance in Hypoxia Using the Critical Power Concept.
    Shearman S; Dwyer D; Skiba P; Townsend N
    Med Sci Sports Exerc; 2016 Mar; 48(3):527-35. PubMed ID: 26460632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of critical power models in elite road cyclists.
    Clark B; Macdermid PW
    Curr Res Physiol; 2021; 4():139-144. PubMed ID: 34746833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Bartram et al (2018).
    Int J Sports Physiol Perform; 2021 Feb; 16(2):322. PubMed ID: 36626652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between power-duration parameters and mechanical and anthropometric properties of the thigh in elite cyclists.
    Kordi M; Menzies C; Parker Simpson L
    Eur J Appl Physiol; 2018 Mar; 118(3):637-645. PubMed ID: 29352330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Power-Duration Relationship in Professional Cyclists During the Giro d'Italia.
    Vinetti G; Pollastri L; Lanfranconi F; Bruseghini P; Taboni A; Ferretti G
    J Strength Cond Res; 2023 Apr; 37(4):866-871. PubMed ID: 36026464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of work and recovery durations on W' reconstitution during intermittent exercise.
    Skiba PF; Jackman S; Clarke D; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2014 Jul; 46(7):1433-40. PubMed ID: 24492634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slowing the Reconstitution of W' in Recovery With Repeated Bouts of Maximal Exercise.
    Chorley A; Bott RP; Marwood S; Lamb KL
    Int J Sports Physiol Perform; 2019 Feb; 14(2):149-155. PubMed ID: 29952673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Relationship Between Neuromuscular Function and the W' in Elite Cyclists.
    Kordi M; Parker Simpson L; Thomas K; Goodall S; Maden-Wilkinson T; Menzies C; Howatson G
    Int J Sports Physiol Perform; 2021 Nov; 16(11):1656-1662. PubMed ID: 33873151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.
    Muniz-Pumares D; Pedlar C; Godfrey R; Glaister M
    J Sports Sci; 2017 Dec; 35(23):2357-2364. PubMed ID: 28019724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic model of the bi-exponential reconstitution and expenditure of W' in trained cyclists.
    Chorley A; Marwood S; Lamb KL
    Eur J Sport Sci; 2023 Dec; 23(12):2368-2378. PubMed ID: 37470470
    [No Abstract]   [Full Text] [Related]  

  • 20. W' Recovery Kinetics after Exhaustion: A Two-Phase Exponential Process Influenced by Aerobic Fitness.
    Caen K; Bourgois G; Dauwe C; Blancquaert L; Vermeire K; Lievens E; VAN Dorpe JO; Derave W; Bourgois JG; Pringels L; Boone J
    Med Sci Sports Exerc; 2021 Sep; 53(9):1911-1921. PubMed ID: 33787532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.