BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34560949)

  • 21. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms.
    Ahmed-Haras MR; Kao N; Ward L; Islam MS
    Int J Biol Macromol; 2020 Mar; 146():150-161. PubMed ID: 31837363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization.
    Alhazmi H; Shah SAR; Anwar MK; Raza A; Ullah MK; Iqbal F
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin.
    Du FL; Du QS; Dai J; Tang PD; Li YM; Long SY; Xie NZ; Wang QY; Huang RB
    PLoS One; 2018; 13(6):e0197188. PubMed ID: 29856735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Useful byproducts from cellulosic wastes of agriculture and food industry--a critical appraisal.
    Das H; Singh SK
    Crit Rev Food Sci Nutr; 2004; 44(2):77-89. PubMed ID: 15116755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Processing and characterization of natural cellulose fibers/thermoset polymer composites.
    Thakur VK; Thakur MK
    Carbohydr Polym; 2014 Aug; 109():102-17. PubMed ID: 24815407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters.
    Almashhadani AQ; Leh CP; Chan SY; Lee CY; Goh CF
    Carbohydr Polym; 2022 Jun; 286():119285. PubMed ID: 35337507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent.
    Chen Q; Shi Y; Chen G; Cai M
    Int J Biol Macromol; 2020 Jan; 142():846-854. PubMed ID: 31622700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PBAT Based Composites Reinforced with Microcrystalline Cellulose Obtained from Softwood Almond Shells.
    Botta L; Titone V; Mistretta MC; La Mantia FP; Modica A; Bruno M; Sottile F; Lopresti F
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and Production of Nanocrystalline Cellulose from Conocarpus Fiber.
    Khan A; Jawaid M; Kian LK; Khan AAP; Asiri AM
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34206136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of novel superdisintegrants for pharmaceutical tableting based on functionalized nanocellulose hydrogels.
    Sheikhy S; Safekordi AA; Ghorbani M; Adibkia K; Hamishehkar H
    Int J Biol Macromol; 2021 Jan; 167():667-675. PubMed ID: 33249148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products.
    Pawar K; Render D; Rangari V; Lee Y; Babu RJ
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential Applications of Bacterial Cellulose in Environmental and Pharmaceutical Sectors.
    Ul-Islam M; Ul-Islam S; Yasir S; Fatima A; Ahmed MW; Lee YS; Manan S; Ullah MW
    Curr Pharm Des; 2020; 26(45):5793-5806. PubMed ID: 33032504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of micro- and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel.
    Ahmadi M; Madadlou A; Sabouri AA
    Food Chem; 2015 May; 174():97-103. PubMed ID: 25529657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composites of Unsaturated Polyester Resins with Microcrystalline Cellulose and Its Derivatives.
    Chabros A; Gawdzik B; Podkościelna B; Goliszek M; Pączkowski P
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties.
    Li J; Zhang X; Zhang J; Mi Q; Jia F; Wu J; Yu J; Zhang J
    Carbohydr Polym; 2019 Nov; 223():115057. PubMed ID: 31427002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient.
    Kamel R; El-Wakil NA; Dufresne A; Elkasabgy NA
    Int J Biol Macromol; 2020 Nov; 163():1579-1590. PubMed ID: 32755697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.
    Zhang L; Peng X; Zhong L; Chua W; Xiang Z; Sun R
    Curr Med Chem; 2019; 26(14):2456-2474. PubMed ID: 28925867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.
    Väisänen T; Haapala A; Lappalainen R; Tomppo L
    Waste Manag; 2016 Aug; 54():62-73. PubMed ID: 27184447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): Statistical optimization.
    Baruah J; Deka RC; Kalita E
    Int J Biol Macromol; 2020 Jul; 154():672-682. PubMed ID: 32198044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate).
    Chen J; Xu C; Wu D; Pan K; Qian A; Sha Y; Wang L; Tong W
    Carbohydr Polym; 2015 Dec; 134():508-15. PubMed ID: 26428152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.