These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34560949)

  • 61. One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels.
    Li W; Wang S; Li Y; Ma C; Huang Z; Wang C; Li J; Chen Z; Liu S
    Carbohydr Polym; 2017 Nov; 175():7-17. PubMed ID: 28917920
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose.
    Haafiz MK; Hassan A; Zakaria Z; Inuwa IM
    Carbohydr Polym; 2014 Mar; 103():119-25. PubMed ID: 24528708
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chemoenzymatic valorization of agricultural wastes into 4-hydroxyvaleric acid via levulinic acid.
    Moon M; Yeon YJ; Park HJ; Park J; Park GW; Kim GH; Lee JP; Lee D; Lee JS; Min K
    Bioresour Technol; 2021 Oct; 337():125479. PubMed ID: 34320759
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tribological Performance of Composites Reinforced with the Agricultural, Industrial and Post-Consumer Wastes: A Review.
    Sydow Z; Sydow M; Wojciechowski Ł; Bieńczak K
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918606
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hairy cellulose nanocrystalloids: a novel class of nanocellulose.
    van de Ven TG; Sheikhi A
    Nanoscale; 2016 Aug; 8(33):15101-14. PubMed ID: 27453347
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanocrystalline cellulose extracted from pine wood and corncob.
    Ditzel FI; Prestes E; Carvalho BM; Demiate IM; Pinheiro LA
    Carbohydr Polym; 2017 Feb; 157():1577-1585. PubMed ID: 27987871
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives.
    Kuna E; Behling R; Valange S; Chatel G; Colmenares JC
    Top Curr Chem (Cham); 2017 Apr; 375(2):41. PubMed ID: 28337669
    [TBL] [Abstract][Full Text] [Related]  

  • 68.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products.
    Yu S; Sun J; Shi Y; Wang Q; Wu J; Liu J
    Environ Sci Ecotechnol; 2021 Jan; 5():100077. PubMed ID: 36158608
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functionality and nutritional aspects of microcrystalline cellulose in food.
    Nsor-Atindana J; Chen M; Goff HD; Zhong F; Sharif HR; Li Y
    Carbohydr Polym; 2017 Sep; 172():159-174. PubMed ID: 28606522
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose.
    Pichandi S; Rana S; Parveen S; Fangueiro R
    Carbohydr Polym; 2018 Oct; 197():137-146. PubMed ID: 30007598
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact.
    Usmani Z; Sharma M; Awasthi AK; Sivakumar N; Lukk T; Pecoraro L; Thakur VK; Roberts D; Newbold J; Gupta VK
    Bioresour Technol; 2021 Feb; 322():124548. PubMed ID: 33380376
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predominant secretion of cellobiohydrolases and endo-β-1,4-glucanases in nutrient-limited medium by Aspergillus spp. isolated from subtropical field.
    Kyu MT; Nishio S; Noda K; Dar B; Aye SS; Matsuda T
    J Biochem; 2020 Sep; 168(3):243-256. PubMed ID: 32330257
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recent Developments of Carboxymethyl Cellulose.
    Rahman MS; Hasan MS; Nitai AS; Nam S; Karmakar AK; Ahsan MS; Shiddiky MJA; Ahmed MB
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924089
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly Advanced Applications.
    Gupta GK; Shukla P
    Front Chem; 2020; 8():601256. PubMed ID: 33425858
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microbial production of rhamnolipids using sugars as carbon sources.
    Tan YN; Li Q
    Microb Cell Fact; 2018 Jun; 17(1):89. PubMed ID: 29884194
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A design optimization study on synthesized nanocrystalline cellulose, evaluation and surface modification as a potential biomaterial for prospective biomedical applications.
    Ngwabebhoh FA; Erdem A; Yildiz U
    Int J Biol Macromol; 2018 Jul; 114():536-546. PubMed ID: 29601877
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug.
    Kalita RD; Nath Y; Ochubiojo ME; Buragohain AK
    Colloids Surf B Biointerfaces; 2013 Aug; 108():85-9. PubMed ID: 23524080
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Review on Nanocrystalline Cellulose in Bone Tissue Engineering Applications.
    Murizan NIS; Mustafa NS; Ngadiman NHA; Mohd Yusof N; Idris A
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33261121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.