BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34561270)

  • 21. Immunotherapy with subcutaneous immunogenic autologous tumor lysate increases murine glioblastoma survival.
    Belmans J; Van Woensel M; Creyns B; Dejaegher J; Bullens DM; Van Gool SW
    Sci Rep; 2017 Oct; 7(1):13902. PubMed ID: 29066810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunological challenges for peptide-based immunotherapy in glioblastoma.
    Mohme M; Neidert MC; Regli L; Weller M; Martin R
    Cancer Treat Rev; 2014 Mar; 40(2):248-58. PubMed ID: 24064197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging immunotherapies for glioblastoma.
    Desai R; Suryadevara CM; Batich KA; Farber SH; Sanchez-Perez L; Sampson JH
    Expert Opin Emerg Drugs; 2016 Jun; 21(2):133-45. PubMed ID: 27223671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges to Successful Implementation of the Immune Checkpoint Inhibitors for Treatment of Glioblastoma.
    Sanders S; Debinski W
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural Killer Cell-Based Immunotherapy against Glioblastoma.
    Morimoto T; Nakazawa T; Maeoka R; Nakagawa I; Tsujimura T; Matsuda R
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives.
    Sener U; Ruff MW; Campian JL
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immune Escape in Glioblastoma: Mechanisms of Action and Implications for Immune Checkpoint Inhibitors and CAR T-Cell Therapy.
    Yu C; Hsieh K; Cherry DR; Nehlsen AD; Resende Salgado L; Lazarev S; Sindhu KK
    Biology (Basel); 2023 Dec; 12(12):. PubMed ID: 38132354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma.
    Majd N; de Groot J
    Expert Opin Pharmacother; 2019 Sep; 20(13):1609-1624. PubMed ID: 31264484
    [No Abstract]   [Full Text] [Related]  

  • 29. Extrinsic factors associated with the response to immunotherapy in glioblastoma.
    Bi H; Zhang C
    Cancer Lett; 2021 Jul; 511():47-55. PubMed ID: 33933551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Update on the Role of Immunotherapy and Vaccine Strategies for Primary Brain Tumors.
    Neagu MR; Reardon DA
    Curr Treat Options Oncol; 2015 Nov; 16(11):54. PubMed ID: 26454859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glioma-associated cancer-initiating cells induce immunosuppression.
    Wei J; Barr J; Kong LY; Wang Y; Wu A; Sharma AK; Gumin J; Henry V; Colman H; Sawaya R; Lang FF; Heimberger AB
    Clin Cancer Res; 2010 Jan; 16(2):461-73. PubMed ID: 20068105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunotherapy in human glioblastoma.
    Szabo AT; Carpentier AF
    Rev Neurol (Paris); 2011 Oct; 167(10):668-72. PubMed ID: 21885075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon ion radiotherapy boost in the treatment of glioblastoma: a randomized phase I/III clinical trial.
    Kong L; Gao J; Hu J; Lu R; Yang J; Qiu X; Hu W; Lu JJ
    Cancer Commun (Lond); 2019 Feb; 39(1):5. PubMed ID: 30786916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overcoming the immune suppressive nature of glioblastoma by leveraging the surgical intervention - current status and future perspectives.
    Duerinck J; Tuyaerts S; Movahedi K; Neyns B
    Front Immunol; 2023; 14():1183641. PubMed ID: 37275902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features.
    Kim HJ; Kim DY
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33053763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glioblastoma-activated pericytes support tumor growth via immunosuppression.
    Sena IFG; Paiva AE; Prazeres PHDM; Azevedo PO; Lousado L; Bhutia SK; Salmina AB; Mintz A; Birbrair A
    Cancer Med; 2018 Apr; 7(4):1232-1239. PubMed ID: 29479841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunocompetent murine models for the study of glioblastoma immunotherapy.
    Oh T; Fakurnejad S; Sayegh ET; Clark AJ; Ivan ME; Sun MZ; Safaee M; Bloch O; James CD; Parsa AT
    J Transl Med; 2014 Apr; 12():107. PubMed ID: 24779345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preclinical Modeling of Surgery and Steroid Therapy for Glioblastoma Reveals Changes in Immunophenotype that are Associated with Tumor Growth and Outcome.
    Otvos B; Alban TJ; Grabowski MM; Bayik D; Mulkearns-Hubert EE; Radivoyevitch T; Rabljenovic A; Johnson S; Androjna C; Mohammadi AM; Barnett GH; Ahluwalia MS; Vogelbaum MA; Fecci PE; Lathia JD
    Clin Cancer Res; 2021 Apr; 27(7):2038-2049. PubMed ID: 33542075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models.
    Koch MS; Zdioruk M; Nowicki MO; Griffith AM; Aguilar E; Aguilar LK; Guzik BW; Barone F; Tak PP; Tabatabai G; Lederer JA; Chiocca EA; Lawler S
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35017150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. T Cell Exhaustion in Glioblastoma: Intricacies of Immune Checkpoints.
    Mirzaei R; Sarkar S; Yong VW
    Trends Immunol; 2017 Feb; 38(2):104-115. PubMed ID: 27964820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.