BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34561308)

  • 1. Edge current and pairing order transition in chiral bacterial vortices.
    Beppu K; Izri Z; Sato T; Yamanishi Y; Sumino Y; Maeda YT
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring order in active turbulence: Geometric rule and pairing order transition in confined bacterial vortices.
    Beppu K; Maeda YT
    Biophys Physicobiol; 2022; 19():1-9. PubMed ID: 35797406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry-driven collective ordering of bacterial vortices.
    Beppu K; Izri Z; Gohya J; Eto K; Ichikawa M; Maeda YT
    Soft Matter; 2017 Jul; 13(29):5038-5043. PubMed ID: 28702666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering bacterial vortex lattice via direct laser lithography.
    Nishiguchi D; Aranson IS; Snezhko A; Sokolov A
    Nat Commun; 2018 Oct; 9(1):4486. PubMed ID: 30367049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport powered by bacterial turbulence.
    Kaiser A; Peshkov A; Sokolov A; ten Hagen B; Löwen H; Aranson IS
    Phys Rev Lett; 2014 Apr; 112(15):158101. PubMed ID: 24785075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confinement stabilizes a bacterial suspension into a spiral vortex.
    Wioland H; Woodhouse FG; Dunkel J; Kessler JO; Goldstein RE
    Phys Rev Lett; 2013 Jun; 110(26):268102. PubMed ID: 23848925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic control of spatiotemporal order in bacterial active matter.
    Liu S; Shankar S; Marchetti MC; Wu Y
    Nature; 2021 Feb; 590(7844):80-84. PubMed ID: 33536650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent turbulence in flowing bacterial suspensions.
    Secchi E; Rusconi R; Buzzaccaro S; Salek MM; Smriga S; Piazza R; Stocker R
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced clustering of Escherichia coli by acoustic fields.
    Gutiérrez-Ramos S; Hoyos M; Ruiz-Suárez JC
    Sci Rep; 2018 Mar; 8(1):4668. PubMed ID: 29549342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetric shear banding and swarming vortices in bacterial superfluids.
    Guo S; Samanta D; Peng Y; Xu X; Cheng X
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7212-7217. PubMed ID: 29941551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Vortices in Chiral Media: The Chiral Propulsion Effect.
    Hirono Y; Kharzeev DE; Sadofyev AV
    Phys Rev Lett; 2018 Oct; 121(14):142301. PubMed ID: 30339411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crack patterns of drying dense bacterial suspensions.
    Ma X; Liu Z; Zeng W; Lin T; Tian X; Cheng X
    Soft Matter; 2022 Jul; 18(28):5239-5248. PubMed ID: 35771131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swimming bacteria power microspin cycles.
    Hamby AE; Vig DK; Gaines S; Wolgemuth CW
    Sci Adv; 2018 Dec; 4(12):eaau0125. PubMed ID: 30585288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous chiral symmetry breaking in collective active motion.
    Breier RE; Selinger RL; Ciccotti G; Herminghaus S; Mazza MG
    Phys Rev E; 2016 Feb; 93(2):022410. PubMed ID: 26986365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.
    Chen C; Liu S; Shi XQ; Chaté H; Wu Y
    Nature; 2017 Feb; 542(7640):210-214. PubMed ID: 28114301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile and chiral activities codetermine the helicity of swimming droplet trajectories.
    Tjhung E; Cates ME; Marenduzzo D
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4631-4636. PubMed ID: 28416689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide.
    Xu SY; Ma Q; Gao Y; Kogar A; Zong A; Mier Valdivia AM; Dinh TH; Huang SM; Singh B; Hsu CH; Chang TR; Ruff JPC; Watanabe K; Taniguchi T; Lin H; Karapetrov G; Xiao D; Jarillo-Herrero P; Gedik N
    Nature; 2020 Feb; 578(7796):545-549. PubMed ID: 32103195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral symmetry breaking in a reaction-diffusion system.
    Li BW; Deng LY; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042905. PubMed ID: 23679487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Vortices with Dynamic Rotation Emerged from Monolayer Collective Motion of Gliding
    Nakane D; Odaka S; Suzuki K; Nishizaka T
    J Bacteriol; 2021 Jun; 203(14):e0007321. PubMed ID: 33927052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental symmetry origins in the chiral interactions of optical vortices.
    Andrews DL
    Chirality; 2023 Nov; 35(11):899-913. PubMed ID: 37403618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.