These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34561417)

  • 1. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses.
    Somers P; Liang Z; Johnson JE; Boudouris BW; Pan L; Xu X
    Light Sci Appl; 2021 Sep; 10(1):199. PubMed ID: 34561417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a 30 µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization.
    Lee BJ; Hsiao K; Lipkowitz G; Samuelsen T; Tate L; DeSimone JM
    Addit Manuf; 2022 Jul; 55():. PubMed ID: 35602181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.
    Chen X; Liu W; Dong B; Lee J; Ware HOT; Zhang HF; Sun C
    Adv Mater; 2018 May; 30(18):e1705683. PubMed ID: 29573485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology.
    Ertugrul I
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32443757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Near-Perfect Diffractive Optical Elements
    Wang H; Wang H; Zhang W; Yang JKW
    ACS Nano; 2020 Aug; 14(8):10452-10461. PubMed ID: 32687316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the potential use of two-photon polymerization to 3D print chromatographic packed bed supports.
    Matheuse F; Vanmol K; Van Erps J; De Malsche W; Ottevaere H; Desmet G
    J Chromatogr A; 2022 Jan; 1663():462763. PubMed ID: 34968955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope.
    Pearre BW; Michas C; Tsang JM; Gardner TJ; Otchy TM
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 32864346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.
    Yeung C; Chen S; King B; Lin H; King K; Akhtar F; Diaz G; Wang B; Zhu J; Sun W; Khademhosseini A; Emaminejad S
    Biomicrofluidics; 2019 Nov; 13(6):064125. PubMed ID: 31832123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale laser 3D printing.
    Jonušauskas L; Gailevičius D; Rekštytė S; Baldacchini T; Juodkazis S; Malinauskas M
    Opt Express; 2019 May; 27(11):15205-15221. PubMed ID: 31163720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Laser Printing of Macro-Scale Glass Objects at a Micro-Scale Resolution.
    Wang P; Chu W; Li W; Tan Y; Liu F; Wang M; Qi J; Lin J; Zhang F; Wang Z; Cheng Y
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31454927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeform 3D Ice Printing (3D-ICE) at the Micro Scale.
    Garg A; Yerneni SS; Campbell P; LeDuc PR; Ozdoganlar OB
    Adv Sci (Weinh); 2022 Sep; 9(27):e2201566. PubMed ID: 35794454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAD/CAM for scalable nanomanufacturing: A network-based system for hybrid 3D printing.
    Yoon HS; Lee HT; Jang KH; Kim CS; Park H; Kim DW; Lee K; Min S; Ahn SH
    Microsyst Nanoeng; 2017; 3():17072. PubMed ID: 31057888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface.
    Wu J; Guo J; Linghu C; Lu Y; Song J; Xie T; Zhao Q
    Nat Commun; 2021 Oct; 12(1):6070. PubMed ID: 34663828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Nanofabrication of SiOC Ceramic Structures.
    Brigo L; Schmidt JEM; Gandin A; Michieli N; Colombo P; Brusatin G
    Adv Sci (Weinh); 2018 Dec; 5(12):1800937. PubMed ID: 30581702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Fabrication of Micron-Thickness PVA-CNT Patterned Films by Integrating Micro-Pen Writing of PVA Films and Drop-on-Demand Printing of CNT Micropatterns.
    Luo J; Zhao Z; Qi L; Lian H; Zhao Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.
    Ho CMB; Mishra A; Hu K; An J; Kim YJ; Yoon YJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2198-2214. PubMed ID: 33445279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained Window Design in Projection Stereolithography for Continuous Three-Dimensional Printing.
    Jiang Y; Wang Y; He H; Feinerman A; Pan Y
    3D Print Addit Manuf; 2020 Aug; 7(4):163-169. PubMed ID: 36654925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluid-supported 3D hydrogel bioprinting method.
    Beh CW; Yew DS; Chai RJ; Chin SY; Seow Y; Hoon SS
    Biomaterials; 2021 Sep; 276():121034. PubMed ID: 34332372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.