These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34561489)

  • 41. Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog.
    Wang IJ; Shaffer HB
    Evolution; 2008 Nov; 62(11):2742-59. PubMed ID: 18764916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anti-predator defences are linked with high levels of genetic differentiation in frogs.
    Medina I; Dong C; Marquez R; Perez DM; Wang IJ; Stuart-Fox D
    Proc Biol Sci; 2024 Jan; 291(2015):20232292. PubMed ID: 38264783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative analysis of passive defences in spiders (Araneae).
    Pekár S
    J Anim Ecol; 2014 Jul; 83(4):779-90. PubMed ID: 24205934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The evolution of aposematism is accompanied by increased diversification.
    Przeczek K; Mueller C; Vamosi SM
    Integr Zool; 2008 Sep; 3(3):149-56. PubMed ID: 21396063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Divergence in parental care, habitat selection and larval life history between two species of Peruvian poison frogs: an experimental analysis.
    Brown JL; Morales V; Summers K
    J Evol Biol; 2008 Nov; 21(6):1534-43. PubMed ID: 18811668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis.
    Amézquita A; Ramos Ó; González MC; Rodríguez C; Medina I; Simões PI; Lima AP
    Evolution; 2017 Apr; 71(4):1039-1050. PubMed ID: 28067425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.
    Dreher CE; Cummings ME; Pröhl H
    PLoS One; 2015; 10(6):e0130571. PubMed ID: 26110826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tadpole-transporting frogs use stagnant water odor to find pools in the rainforest.
    Serrano-Rojas SJ; Pašukonis A
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34608492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visual environment of rearing sites affects larval response to perceived risk in poison frogs.
    Fouilloux CA; Stynoski JL; Yovanovich CAM; Rojas B
    J Exp Biol; 2023 Jun; 226(12):. PubMed ID: 37203595
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maternally derived chemical defences are an effective deterrent against some predators of poison frog tadpoles (Oophaga pumilio).
    Stynoski JL; Shelton G; Stynoski P
    Biol Lett; 2014 May; 10(5):20140187. PubMed ID: 24850895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae).
    Briolat ES; Zagrobelny M; Olsen CE; Blount JD; Stevens M
    J Evol Biol; 2019 Jan; 32(1):31-48. PubMed ID: 30317689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential detectability of polymorphic warning signals under varying light environments.
    Rojas B; Rautiala P; Mappes J
    Behav Processes; 2014 Nov; 109 Pt B():164-72. PubMed ID: 25158931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hormonal and neural correlates of care in active versus observing poison frog parents.
    Fischer EK; O'Connell LA
    Horm Behav; 2020 Apr; 120():104696. PubMed ID: 31987899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Does the whistling thorn acacia (Acacia drepanolobium) use auditory aposematism to deter mammalian herbivores?
    Lev-Yadun S
    Plant Signal Behav; 2016 Aug; 11(8):e1207035. PubMed ID: 27359246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phylogeny and classification of poison frogs (Amphibia: dendrobatidae), based on mitochondrial 16S and 12S ribosomal RNA gene sequences.
    Vences M; Kosuch J; Lötters S; Widmer A; Jungfer KH; Köhler J; Veith M
    Mol Phylogenet Evol; 2000 Apr; 15(1):34-40. PubMed ID: 10764533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EVOLUTION OF GREGARIOUSNESS IN APOSEMATIC BUTTERFLY LARVAE: A PHYLOGENETIC ANALYSIS.
    Sillén-Tullberg B
    Evolution; 1988 Mar; 42(2):293-305. PubMed ID: 28567849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian.
    Brown JL; Morales V; Summers K
    Am Nat; 2010 Apr; 175(4):436-46. PubMed ID: 20180700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species.
    Scaramangas A; Broom M
    J Math Biol; 2022 Jul; 85(2):13. PubMed ID: 35870017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The evolution of parental care and egg size: a comparative analysis in frogs.
    Summers K; Sea McKeon C; Heying H
    Proc Biol Sci; 2006 Mar; 273(1587):687-92. PubMed ID: 16608687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis.
    Darst CR; Menéndez-Guerrero PA; Coloma LA; Cannatella DC
    Am Nat; 2005 Jan; 165(1):56-69. PubMed ID: 15729640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.