BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34561881)

  • 1. Polysaccharides from Volvariella volvacea inhibit fat accumulation in C. elegans dependent on the aak-2/nhr-49-mediated pathway.
    Bai J; Li J; Pan R; Zhu Y; Xiao X; Li Y; Li C
    J Food Biochem; 2021 Nov; 45(11):e13912. PubMed ID: 34561881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.
    Moreno-Arriola E; El Hafidi M; Ortega-Cuéllar D; Carvajal K
    PLoS One; 2016; 11(1):e0148089. PubMed ID: 26824904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pasteurized
    Wu Z; Xiao Y; Zhou F; Chen J; Chen X; Hou A; Wang Y; Li Z
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in
    Farias-Pereira R; Savarese J; Yue Y; Lee SH; Park Y
    Curr Res Food Sci; 2020 Jun; 2():70-76. PubMed ID: 32914113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of nuclear receptor NHR-64 in fat storage regulation in Caenorhabditis elegans.
    Liang B; Ferguson K; Kadyk L; Watts JL
    PLoS One; 2010 Mar; 5(3):e9869. PubMed ID: 20360843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranberry Product Decreases Fat Accumulation in Caenorhabditis elegans.
    Sun Q; Yue Y; Shen P; Yang JJ; Park Y
    J Med Food; 2016 Apr; 19(4):427-33. PubMed ID: 26991055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.
    Van Gilst MR; Hadjivassiliou H; Jolly A; Yamamoto KR
    PLoS Biol; 2005 Feb; 3(2):e53. PubMed ID: 15719061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans.
    Taubert S; Van Gilst MR; Hansen M; Yamamoto KR
    Genes Dev; 2006 May; 20(9):1137-49. PubMed ID: 16651656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Pentagalloyl Glucose in Alleviating Fat Accumulation in
    Zhang X; Li W; Tang Y; Lin C; Cao Y; Chen Y
    J Agric Food Chem; 2019 Dec; 67(51):14110-14120. PubMed ID: 31789033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisphenol S promotes fat storage in multiple generations of Caenorhabditis elegans in a daf-16/nhr-49 dependent manner.
    Zhou X; Li J; Zhang X; Zhang C; Bai J; Zhao Y; Zhu Y; Zhang J; Xiao X
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Dec; 250():109175. PubMed ID: 34464736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisphenol S increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans.
    Xiao X; Zhang X; Bai J; Li J; Zhang C; Zhao Y; Zhu Y; Zhang J; Zhou X
    Food Chem; 2021 Mar; 339():127813. PubMed ID: 32916401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans.
    Shen P; Hsieh TH; Yue Y; Sun Q; Clark JM; Park Y
    Food Chem Toxicol; 2017 Mar; 101():149-156. PubMed ID: 28119079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions.
    Cunningham KA; Bouagnon AD; Barros AG; Lin L; Malard L; Romano-Silva MA; Ashrafi K
    PLoS Genet; 2014 Jun; 10(6):e1004394. PubMed ID: 24921650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel functions of lipid-binding protein 5 in Caenorhabditis elegans fat metabolism.
    Xu M; Joo HJ; Paik YK
    J Biol Chem; 2011 Aug; 286(32):28111-8. PubMed ID: 21697096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of isoquinoline alkaloids for potent lipid metabolism modulation with Caenorhabditis elegans.
    Chow YL; Sato F
    Biosci Biotechnol Biochem; 2013; 77(12):2405-12. PubMed ID: 24317056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of lipoprotein assembly, secretion and fatty acid β-oxidation by Krüppel-like transcription factor, klf-3.
    Zhang J; Hashmi S; Cheema F; Al-Nasser N; Bakheet R; Parhar RS; Al-Mohanna F; Gaugler R; Hussain MM; Hashmi S
    J Mol Biol; 2013 Aug; 425(15):2641-55. PubMed ID: 23639358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships.
    Pathare PP; Lin A; Bornfeldt KE; Taubert S; Van Gilst MR
    PLoS Genet; 2012; 8(4):e1002645. PubMed ID: 22511885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways.
    Machado ML; Arantes LP; Gubert P; Zamberlan DC; da Silva TC; da Silveira TL; Boligon A; Soares FAA
    PLoS One; 2018; 13(9):e0204023. PubMed ID: 30252861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis.
    Svensson E; Olsen L; Mörck C; Brackmann C; Enejder A; Faergeman NJ; Pilon M
    PLoS One; 2011; 6(6):e21343. PubMed ID: 21712952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermented barley extracts with Lactobacillus plantarum dy-1 decreased fat accumulation of Caenorhabditis elegans in a daf-2-dependent mechanism.
    Zhao Y; Wu C; Bai J; Li J; Cheng K; Zhou X; Dong Y; Xiao X
    J Food Biochem; 2020 Nov; 44(11):e13459. PubMed ID: 32885854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.