These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 34562022)
1. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Goswami RK; Agrawal K; Shah MP; Verma P Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022 [TBL] [Abstract][Full Text] [Related]
2. Microalgae-mediated bioremediation: current trends and opportunities-a review. Ali SS; Hassan LHS; El-Sheekh M Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670 [TBL] [Abstract][Full Text] [Related]
3. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Ranjbar S; Malcata FX Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582 [TBL] [Abstract][Full Text] [Related]
4. Microalgae - A promising tool for heavy metal remediation. Suresh Kumar K; Dahms HU; Won EJ; Lee JS; Shin KH Ecotoxicol Environ Saf; 2015 Mar; 113():329-52. PubMed ID: 25528489 [TBL] [Abstract][Full Text] [Related]
5. Algae as a green technology for heavy metals removal from various wastewater. Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951 [TBL] [Abstract][Full Text] [Related]
6. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Leong YK; Chang JS Bioresour Technol; 2020 May; 303():122886. PubMed ID: 32046940 [TBL] [Abstract][Full Text] [Related]
7. Microalgae-bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage. Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M Appl Microbiol Biotechnol; 2018 Feb; 102(3):1131-1144. PubMed ID: 29260261 [TBL] [Abstract][Full Text] [Related]
8. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. Yeheyo HA; Ealias AM; George G; Jagannathan U J Environ Manage; 2024 Jul; 363():121409. PubMed ID: 38861884 [TBL] [Abstract][Full Text] [Related]
9. Potential use of algae for heavy metal bioremediation, a critical review. Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844 [TBL] [Abstract][Full Text] [Related]
10. Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: A critical review. Li H; Watson J; Zhang Y; Lu H; Liu Z Bioresour Technol; 2020 Feb; 298():122421. PubMed ID: 31767428 [TBL] [Abstract][Full Text] [Related]
11. Role of microalgae-bacterial consortium in wastewater treatment: A review. Li L; Chai W; Sun C; Huang L; Sheng T; Song Z; Ma F J Environ Manage; 2024 Jun; 360():121226. PubMed ID: 38795468 [TBL] [Abstract][Full Text] [Related]
12. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Malik S; Kumar D Biotechnol Genet Eng Rev; 2024 Apr; 40(1):154-201. PubMed ID: 36871166 [TBL] [Abstract][Full Text] [Related]
13. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes. Das S; Das S; Ghangrekar MM J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053 [TBL] [Abstract][Full Text] [Related]
14. Microalgae: A green eco-friendly agents for bioremediation of tannery wastewater with simultaneous production of value-added products. Devi A; Verma M; Saratale GD; Saratale RG; Ferreira LFR; Mulla SI; Bharagava RN Chemosphere; 2023 Sep; 336():139192. PubMed ID: 37353172 [TBL] [Abstract][Full Text] [Related]
15. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745 [TBL] [Abstract][Full Text] [Related]
16. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. Aravind MK; Vignesh NS; Gayathri S; Anjitha N; Athira KM; Gunaseelan S; Arunkumar M; Sanjaykumar A; Karthikumar S; Ganesh Moorthy IM; Ashokkumar B; Pugazhendhi A; Varalakshmi P Chemosphere; 2023 Feb; 313():137310. PubMed ID: 36460155 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of microplastics effects on the purification of heavy metals in piggery effluents by microalgae. Wang H; Luo L; Yan B; Luo S Environ Pollut; 2024 Jun; 351():124028. PubMed ID: 38677456 [TBL] [Abstract][Full Text] [Related]
18. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. Liu XY; Hong Y; Liang M; Zhai QY Bioresour Technol; 2023 Oct; 385():129382. PubMed ID: 37352991 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Priyadarshini E; Priyadarshini SS; Pradhan N Appl Microbiol Biotechnol; 2019 Apr; 103(8):3297-3316. PubMed ID: 30847543 [TBL] [Abstract][Full Text] [Related]
20. Wastewater treatment by using microalgae: Insights into fate, transport, and associated challenges. Ali A; Khalid Z; Ahmed A A; Ajarem JS Chemosphere; 2023 Oct; 338():139501. PubMed ID: 37453525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]