These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34562167)

  • 1. Electrically controlled nicotine delivery through Carbon nanotube membranes via electrochemical oxidation and nanofluidically enhanced electroosmotic flow.
    Gulati GK; Hinds BJ
    Biomed Microdevices; 2021 Sep; 23(4):48. PubMed ID: 34562167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A preclinical evaluation of a programmable CNT membrane device for transdermal nicotine delivery in hairless Guinea pigs.
    Gulati GK; Berger LR; Hinds BJ
    J Control Release; 2019 Jan; 293():135-143. PubMed ID: 29990525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes.
    Wu J; Paudel KS; Strasinger C; Hammell D; Stinchcomb AL; Hinds BJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11698-702. PubMed ID: 20547880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes.
    Wu J; Gerstandt K; Majumder M; Zhan X; Hinds BJ
    Nanoscale; 2011 Aug; 3(8):3321-8. PubMed ID: 21727982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable carbon nanotube membrane-based transdermal nicotine delivery with microdialysis validation assay.
    Gulati GK; Chen T; Hinds BJ
    Nanomedicine; 2017 Jan; 13(1):1-9. PubMed ID: 27438911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms.
    Strasinger CL; Scheff NN; Wu J; Hinds BJ; Stinchcomb AL
    Subst Abuse; 2009 Mar; 3():31-39. PubMed ID: 20582253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable transdermal delivery of nicotine in hairless guinea pigs using carbon nanotube membrane pumps.
    Paudel KS; Wu J; Hinds BJ; Stinchcomb AL
    J Pharm Sci; 2012 Oct; 101(10):3823-32. PubMed ID: 22806243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow.
    Majumder M; Chopra N; Hinds BJ
    ACS Nano; 2011 May; 5(5):3867-77. PubMed ID: 21500837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery.
    Majumder M; Stinchcomb A; Hinds BJ
    Life Sci; 2010 Apr; 86(15-16):563-8. PubMed ID: 19383500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable transdermal clonidine delivery through voltage-gated carbon nanotube membranes.
    Strasinger C; Paudel KS; Wu J; Hammell D; Pinninti RR; Hinds BJ; Stinchcomb A
    J Pharm Sci; 2014 Jun; 103(6):1829-38. PubMed ID: 24788096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electrochemical microscopy of iontophoretic transport in hairless mouse skin. Analysis of the relative contributions of diffusion, migration, and electroosmosis to transport in hair follicles.
    Bath BD; Scott ER; Phipps JB; White HS
    J Pharm Sci; 2000 Dec; 89(12):1537-49. PubMed ID: 11042601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-chamber electroosmosis using textile reinforced agar membranes--A promising concept for the future of hemodialysis.
    Kofler M; Lenninger M; Mayer G; Neuwirt H; Grimm M; Bechtold T
    Carbohydr Polym; 2016 Jan; 136():81-6. PubMed ID: 26572331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligned multiwalled carbon nanotube membranes.
    Hinds BJ; Chopra N; Rantell T; Andrews R; Gavalas V; Bachas LG
    Science; 2004 Jan; 303(5654):62-5. PubMed ID: 14645855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of electroosmosis and flux through skin: effect of propylene glycol.
    Lee SY; Jeong NY; Oh SY
    Arch Pharm Res; 2014 Apr; 37(4):484-93. PubMed ID: 24101411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic Enhancement of Water Flux and Ion Rejection through Graphene Oxide/Carbon Nanotube Membrane.
    Zhang H; Quan X; Chen S; Yu H; Niu J
    Environ Sci Technol; 2020 Dec; 54(23):15433-15441. PubMed ID: 33196185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane.
    Bath BD; White HS; Scott ER
    Anal Chem; 2000 Feb; 72(3):433-42. PubMed ID: 10695125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical mineral scale prevention and removal on electrically conducting carbon nanotube--polyamide reverse osmosis membranes.
    Duan W; Dudchenko A; Mende E; Flyer C; Zhu X; Jassby D
    Environ Sci Process Impacts; 2014 May; 16(6):1300-8. PubMed ID: 24563026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single and binary protein electroultrafiltration using poly(vinyl-alcohol)-carbon nanotube (PVA-CNT) composite membranes.
    Yeung R; Zhu X; Gee T; Gheen B; Jassby D; Rodgers VGJ
    PLoS One; 2020; 15(4):e0228973. PubMed ID: 32298267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.