These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34562205)

  • 1. Maize root responses to drought stress depend on root class and axial position.
    Hazman MY; Kabil FF
    J Plant Res; 2022 Jan; 135(1):105-120. PubMed ID: 34562205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive drought alters architectural and anatomical traits of rice roots.
    Hazman M; Brown KM
    Rice (N Y); 2018 Dec; 11(1):62. PubMed ID: 30511228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.
    Zhan A; Schneider H; Lynch JP
    Plant Physiol; 2015 Aug; 168(4):1603-15. PubMed ID: 26077764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.
    Eapen D; Martínez-Guadarrama J; Hernández-Bruno O; Flores L; Nieto-Sotelo J; Cassab GI
    Plant Sci; 2017 Dec; 265():87-99. PubMed ID: 29223345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced root cortical cell file number improves drought tolerance in maize.
    Chimungu JG; Brown KM; Lynch JP
    Plant Physiol; 2014 Dec; 166(4):1943-55. PubMed ID: 25355868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large root cortical cell size improves drought tolerance in maize.
    Chimungu JG; Brown KM; Lynch JP
    Plant Physiol; 2014 Dec; 166(4):2166-78. PubMed ID: 25293960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
    Zhu J; Brown KM; Lynch JP
    Plant Cell Environ; 2010 May; 33(5):740-9. PubMed ID: 20519019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.).
    Gao Y; Lynch JP
    J Exp Bot; 2016 Aug; 67(15):4545-57. PubMed ID: 27401910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions.
    Meunier F; Zarebanadkouki M; Ahmed MA; Carminati A; Couvreur V; Javaux M
    J Plant Physiol; 2018 Aug; 227():31-44. PubMed ID: 29395124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize lateral root developmental plasticity induced by mild water stress. I: Genotypic variation across a high-resolution series of water potentials.
    Dowd TG; Braun DM; Sharp RE
    Plant Cell Environ; 2019 Jul; 42(7):2259-2273. PubMed ID: 29981147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root cortical burden influences drought tolerance in maize.
    Jaramillo RE; Nord EA; Chimungu JG; Brown KM; Lynch JP
    Ann Bot; 2013 Jul; 112(2):429-37. PubMed ID: 23618897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress.
    Guo J; Li C; Zhang X; Li Y; Zhang D; Shi Y; Song Y; Li Y; Yang D; Wang T
    Plant Sci; 2020 Mar; 292():110380. PubMed ID: 32005385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize.
    Ahmed MA; Zarebanadkouki M; Meunier F; Javaux M; Kaestner A; Carminati A
    J Exp Bot; 2018 Feb; 69(5):1199-1206. PubMed ID: 29304205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grasses suppress shoot-borne roots to conserve water during drought.
    Sebastian J; Yee MC; Goudinho Viana W; Rellán-Álvarez R; Feldman M; Priest HD; Trontin C; Lee T; Jiang H; Baxter I; Mockler TC; Hochholdinger F; Brutnell TP; Dinneny JR
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8861-6. PubMed ID: 27422554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Many paths to one goal: Identifying integrated rice root phenotypes for diverse drought environments.
    Fonta JE; Vejchasarn P; Henry A; Lynch JP; Brown KM
    Front Plant Sci; 2022; 13():959629. PubMed ID: 36072326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency.
    Feng X; Jia L; Cai Y; Guan H; Zheng D; Zhang W; Xiong H; Zhou H; Wen Y; Hu Y; Zhang X; Wang Q; Wu F; Xu J; Lu Y
    Plant Biotechnol J; 2022 Nov; 20(11):2077-2088. PubMed ID: 35796628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture.
    Strock CF; Rangarajan H; Black CK; Schäfer ED; Lynch JP
    Ann Bot; 2022 Feb; 129(3):315-330. PubMed ID: 34850823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress.
    Strock CF; Burridge JD; Niemiec MD; Brown KM; Lynch JP
    Plant Cell Environ; 2021 Jan; 44(1):49-67. PubMed ID: 32839986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance.
    Klein SP; Schneider HM; Perkins AC; Brown KM; Lynch JP
    Plant Physiol; 2020 Jul; 183(3):1011-1025. PubMed ID: 32332090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots.
    Ahmad N; Malagoli M; Wirtz M; Hell R
    BMC Plant Biol; 2016 Nov; 16(1):247. PubMed ID: 27829370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.