These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34562384)

  • 1. The arbitrium system controls prophage induction.
    Brady A; Quiles-Puchalt N; Gallego Del Sol F; Zamora-Caballero S; Felipe-Ruíz A; Val-Calvo J; Meijer WJJ; Marina A; Penadés JR
    Curr Biol; 2021 Nov; 31(22):5037-5045.e3. PubMed ID: 34562384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AimR Adopts Preexisting Dimer Conformations for Specific Target Recognition in Lysis-Lysogeny Decisions of
    Pei K; Zhang J; Zou T; Liu Z
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems.
    Gallego Del Sol F; Penadés JR; Marina A
    Mol Cell; 2019 Apr; 74(1):59-72.e3. PubMed ID: 30745087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic interactions between phage and host factors control arbitrium lysis-lysogeny decision.
    Zamora-Caballero S; Chmielowska C; Quiles-Puchalt N; Brady A; Gallego Del Sol F; Mancheño-Bonillo J; Felipe-Ruíz A; Meijer WJJ; Penadés JR; Marina A
    Nat Microbiol; 2024 Jan; 9(1):161-172. PubMed ID: 38177302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the mechanism of action of the arbitrium communication system in SPbeta phages.
    Gallego Del Sol F; Quiles-Puchalt N; Brady A; Penadés JR; Marina A
    Nat Commun; 2022 Jun; 13(1):3627. PubMed ID: 35750663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision.
    Wang Q; Guan Z; Pei K; Wang J; Liu Z; Yin P; Peng D; Zou T
    Nat Microbiol; 2018 Nov; 3(11):1266-1273. PubMed ID: 30224798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a unique repression system present in arbitrium phages of the SPbeta family.
    Brady A; Cabello-Yeves E; Gallego Del Sol F; Chmielowska C; Mancheño-Bonillo J; Zamora-Caballero S; Omer SB; Torres-Puente M; Eldar A; Quiles-Puchalt N; Marina A; Penadés JR
    Cell Host Microbe; 2023 Dec; 31(12):2023-2037.e8. PubMed ID: 38035880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial MazF/MazE toxin-antitoxin suppresses lytic propagation of arbitrium-containing phages.
    Cui Y; Su X; Wang C; Xu H; Hu D; Wang J; Pei K; Sun M; Zou T
    Cell Rep; 2022 Dec; 41(10):111752. PubMed ID: 36476854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria.
    Stokar-Avihail A; Tal N; Erez Z; Lopatina A; Sorek R
    Cell Host Microbe; 2019 May; 25(5):746-755.e5. PubMed ID: 31071296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage.
    Guan Z; Pei K; Wang J; Cui Y; Zhu X; Su X; Zhou Y; Zhang D; Tang C; Yin P; Liu Z; Zou T
    Cell Discov; 2019; 5():29. PubMed ID: 31149347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system.
    Guler P; Bendori SO; Borenstein T; Aframian N; Kessel A; Eldar A
    Nat Microbiol; 2024 Jan; 9(1):150-160. PubMed ID: 38177304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication between viruses guides lysis-lysogeny decisions.
    Erez Z; Steinberger-Levy I; Shamir M; Doron S; Stokar-Avihail A; Peleg Y; Melamed S; Leavitt A; Savidor A; Albeck S; Amitai G; Sorek R
    Nature; 2017 Jan; 541(7638):488-493. PubMed ID: 28099413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components.
    Kohm K; Floccari VA; Lutz VT; Nordmann B; Mittelstädt C; Poehlein A; Dragoš A; Commichau FM; Hertel R
    Environ Microbiol; 2022 Apr; 24(4):2098-2118. PubMed ID: 35293111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dormant phages communicate via arbitrium to control exit from lysogeny.
    Aframian N; Omer Bendori S; Kabel S; Guler P; Stokar-Avihail A; Manor E; Msaeed K; Lipsman V; Grinberg I; Mahagna A; Eldar A
    Nat Microbiol; 2022 Jan; 7(1):145-153. PubMed ID: 34887546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms.
    Bernard C; Li Y; Lopez P; Bapteste E
    ISME J; 2021 Feb; 15(2):545-549. PubMed ID: 33028977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ.
    Kohm K; Jalomo-Khayrova E; Krüger A; Basu S; Steinchen W; Bange G; Frunzke J; Hertel R; Commichau FM; Czech L
    Nucleic Acids Res; 2023 Sep; 51(17):9452-9474. PubMed ID: 37602373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timescales modulate optimal lysis-lysogeny decision switches and near-term phage reproduction.
    Shivam S; Li G; Lucia-Sanz A; Weitz JS
    Virus Evol; 2022; 8(1):veac037. PubMed ID: 35615104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
    Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR
    Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The life cycle of SPβ and related phages.
    Kohm K; Hertel R
    Arch Virol; 2021 Aug; 166(8):2119-2130. PubMed ID: 34100162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of prophage induction and lysogenization by phage communication systems.
    Bruce JB; Lion S; Buckling A; Westra ER; Gandon S
    Curr Biol; 2021 Nov; 31(22):5046-5051.e7. PubMed ID: 34562385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.