These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 34562485)
1. Transition from saliva droplets to solid aerosols in the context of COVID-19 spreading. Stiti M; Castanet G; Corber A; Alden M; Berrocal E Environ Res; 2022 Mar; 204(Pt B):112072. PubMed ID: 34562485 [TBL] [Abstract][Full Text] [Related]
2. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling. Lieber C; Melekidis S; Koch R; Bauer HJ J Aerosol Sci; 2021 May; 154():105760. PubMed ID: 33518792 [TBL] [Abstract][Full Text] [Related]
3. Effect of saliva fluid properties on pathogen transmissibility. Reyes J; Fontes D; Bazzi A; Otero M; Ahmed K; Kinzel M Sci Rep; 2021 Aug; 11(1):16051. PubMed ID: 34362974 [TBL] [Abstract][Full Text] [Related]
4. Physics of virus transmission by speaking droplets. Netz RR; Eaton WA Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25209-25211. PubMed ID: 32973098 [TBL] [Abstract][Full Text] [Related]
5. Numerical evaluation of face masks for prevention of COVID-19 airborne transmission. Liu J; Hao M; Chen S; Yang Y; Li J; Mei Q; Bian X; Liu K Environ Sci Pollut Res Int; 2022 Jun; 29(29):44939-44953. PubMed ID: 35141824 [TBL] [Abstract][Full Text] [Related]
6. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. Feng Y; Marchal T; Sperry T; Yi H J Aerosol Sci; 2020 Sep; 147():105585. PubMed ID: 32427227 [TBL] [Abstract][Full Text] [Related]
7. Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Singing, Coughing, and Sneezing. Schijven J; Vermeulen LC; Swart A; Meijer A; Duizer E; de Roda Husman AM Environ Health Perspect; 2021 Apr; 129(4):47002. PubMed ID: 33793301 [TBL] [Abstract][Full Text] [Related]
8. Assessing suspension and infectivity times of virus-loaded aerosols involved in airborne transmission. Merhi T; Atasi O; Coetsier C; Lalanne B; Roger K Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2204593119. PubMed ID: 35930663 [TBL] [Abstract][Full Text] [Related]
9. Airborne virus transmission: Increased spreading due to formation of hollow particles. Ozler G; Grosshans H Environ Res; 2023 Nov; 237(Pt 2):116953. PubMed ID: 37648186 [TBL] [Abstract][Full Text] [Related]
10. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. Wang Y; Xu G; Huang YW PLoS One; 2020; 15(10):e0241539. PubMed ID: 33125421 [TBL] [Abstract][Full Text] [Related]
11. Human Research Study of Particulate Propagation Distance From Human Respiratory Function. Reyes J; Stiehl B; Delgado J; Kinzel M; Ahmed K J Infect Dis; 2022 Apr; 225(8):1321-1329. PubMed ID: 35022781 [TBL] [Abstract][Full Text] [Related]
12. Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: Influence of shape and environmental factors on particokinetics/particle aerodynamics. Singh AV; Katz A; Maharjan RS; Gadicherla AK; Richter MH; Heyda J; Del Pino P; Laux P; Luch A Sci Total Environ; 2023 Feb; 860():160503. PubMed ID: 36442637 [TBL] [Abstract][Full Text] [Related]
13. Airborne dispersion of droplets during coughing: a physical model of viral transmission. Li H; Leong FY; Xu G; Kang CW; Lim KH; Tan BH; Loo CM Sci Rep; 2021 Feb; 11(1):4617. PubMed ID: 33633316 [TBL] [Abstract][Full Text] [Related]
14. Why airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective. Ram K; Thakur RC; Singh DK; Kawamura K; Shimouchi A; Sekine Y; Nishimura H; Singh SK; Pavuluri CM; Singh RS; Tripathi SN Sci Total Environ; 2021 Jun; 773():145525. PubMed ID: 33940729 [TBL] [Abstract][Full Text] [Related]
15. Computational characterization of the behavior of a saliva droplet in a social environment. Ugarte-Anero A; Fernandez-Gamiz U; Portal-Porras K; Zulueta E; Urbina-Garcia O Sci Rep; 2022 Apr; 12(1):6405. PubMed ID: 35437309 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2. Ueki H; Furusawa Y; Iwatsuki-Horimoto K; Imai M; Kabata H; Nishimura H; Kawaoka Y mSphere; 2020 Oct; 5(5):. PubMed ID: 33087517 [TBL] [Abstract][Full Text] [Related]
17. Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing. Rosti ME; Olivieri S; Cavaiola M; Seminara A; Mazzino A Sci Rep; 2020 Dec; 10(1):22426. PubMed ID: 33380739 [TBL] [Abstract][Full Text] [Related]
18. On coughing and airborne droplet transmission to humans. Dbouk T; Drikakis D Phys Fluids (1994); 2020 May; 32(5):053310. PubMed ID: 32574229 [TBL] [Abstract][Full Text] [Related]
19. Physiology to Disease Transmission of Respiratory Tract Infection: A Narrative Review. Singh NK; Kumar N; Singh AK Infect Disord Drug Targets; 2021; 21(6):e170721188930. PubMed ID: 33297921 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review. Norvihoho LK; Yin J; Zhou ZF; Han J; Chen B; Fan LH; Lichtfouse E Environ Chem Lett; 2023; 21(3):1701-1727. PubMed ID: 36846189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]