These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34562726)

  • 1. iR5hmcSC: Identifying RNA 5-hydroxymethylcytosine with multiple features based on stacking learning.
    Zhang S; Shi H
    Comput Biol Chem; 2021 Dec; 95():107583. PubMed ID: 34562726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting.
    Shi H; Zhang S; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.
    Liu Y; Chen D; Su R; Chen W; Wei L
    Front Bioeng Biotechnol; 2020; 8():227. PubMed ID: 32296686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iORI-ENST: identifying origin of replication sites based on elastic net and stacking learning.
    Yao Y; Zhang S; Liang Y
    SAR QSAR Environ Res; 2021 Apr; 32(4):317-331. PubMed ID: 33730950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of RNA 5-hydroxymethylcytosine modification by utilizing novel position-specific gapped k-mer descriptors.
    Ahmed S; Hossain Z; Uddin M; Taherzadeh G; Sharma A; Shatabda S; Dehzangi A
    Comput Struct Biotechnol J; 2020; 18():3528-3538. PubMed ID: 33304452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. i5hmCVec: Identifying 5-Hydroxymethylcytosine Sites of
    Liu HY; Du PF
    Front Genet; 2022; 13():896925. PubMed ID: 35591855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification.
    Zou H
    J Bioinform Comput Biol; 2022 Aug; 20(4):2250017. PubMed ID: 35918795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of N4-methylcytosine sites in the mouse genome with machine-learning method.
    Zulfiqar H; Khan RS; Hassan F; Hippe K; Hunt C; Ding H; Song XM; Cao R
    Math Biosci Eng; 2021 Apr; 18(4):3348-3363. PubMed ID: 34198389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Succinylation sites from protein sequences using ensemble support vector machine.
    Ning Q; Zhao X; Bao L; Ma Z; Zhao X
    BMC Bioinformatics; 2018 Jun; 19(1):237. PubMed ID: 29940836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression.
    Zhou S; Wang S; Wu Q; Azim R; Li W
    Comput Biol Chem; 2020 Apr; 85():107200. PubMed ID: 32058946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free DNA 5-hydroxymethylcytosine profiles of long non-coding RNA genes enable early detection and progression monitoring of human cancers.
    Zhou M; Hou P; Yan C; Chen L; Li K; Wang Y; Zhao J; Su J; Sun J
    Clin Epigenetics; 2021 Oct; 13(1):197. PubMed ID: 34689838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DGA-5mC: A 5-methylcytosine site prediction model based on an improved DenseNet and bidirectional GRU method.
    Jia J; Qin L; Lei R
    Math Biosci Eng; 2023 Mar; 20(6):9759-9780. PubMed ID: 37322910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-hydroxymethylcytosine is detected in RNA from mouse brain tissues.
    Miao Z; Xin N; Wei B; Hua X; Zhang G; Leng C; Zhao C; Wu D; Li J; Ge W; Sun M; Xu X
    Brain Res; 2016 Jul; 1642():546-552. PubMed ID: 27117867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches.
    Naseem A; Khan YD
    Methods; 2024 Aug; 228():65-79. PubMed ID: 38768931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated 5-hydroxymethylcytosine and fragmentation signatures as enhanced biomarkers in lung cancer.
    Hu X; Luo K; Shi H; Yan X; Huang R; Zhao B; Zhang J; Xie D; Zhang W
    Clin Epigenetics; 2022 Jan; 14(1):15. PubMed ID: 35073982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping 5-Hydroxymethylcytosine (5hmC) Modifications in Skeletal Tissues Using High-Throughput Sequencing.
    Grandi FC; Bhutani N
    Methods Mol Biol; 2021; 2221():101-108. PubMed ID: 32979201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of DNA N4-methylcytosine sites based on multi-source features and gradient boosting decision tree.
    Zhang S; Yao Y; Wang J; Liang Y
    Anal Biochem; 2022 Sep; 652():114746. PubMed ID: 35609687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PseU-ST: A new stacked ensemble-learning method for identifying RNA pseudouridine sites.
    Zhang X; Wang S; Xie L; Zhu Y
    Front Genet; 2023; 14():1121694. PubMed ID: 36741328
    [No Abstract]   [Full Text] [Related]  

  • 19. im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention Mechanisms for Identifying 5-methylcytosine Sites in Human RNA.
    Jia J; Qin L; Lei R
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):346. PubMed ID: 38179749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iDHS-DASTS: identifying DNase I hypersensitive sites based on LASSO and stacking learning.
    Zhang S; Duan Z; Yang W; Qian C; You Y
    Mol Omics; 2021 Feb; 17(1):130-141. PubMed ID: 33295914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.