These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34562726)

  • 21. iDHS-DASTS: identifying DNase I hypersensitive sites based on LASSO and stacking learning.
    Zhang S; Duan Z; Yang W; Qian C; You Y
    Mol Omics; 2021 Feb; 17(1):130-141. PubMed ID: 33295914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. M6A-GSMS: Computational identification of N
    Zhang S; Wang J; Li X; Liang Y
    J Biomol Struct Dyn; 2022; 40(22):12380-12391. PubMed ID: 34459713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of bovine milk somatic cells based on multi-feature extraction and a GBDT-AdaBoost fusion model.
    Bai J; Xue H; Jiang X; Zhou Y
    Math Biosci Eng; 2022 Apr; 19(6):5850-5866. PubMed ID: 35603382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A feature-based approach to predict hot spots in protein-DNA binding interfaces.
    Zhang S; Zhao L; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of radiomics based on
    Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R
    Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved residual network using deep fusion for identifying RNA 5-methylcytosine sites.
    Li X; Zhang S; Shi H
    Bioinformatics; 2022 Sep; 38(18):4271-4277. PubMed ID: 35866985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree.
    Liang Y; Ma X
    SAR QSAR Environ Res; 2023 Jan; 34(1):1-19. PubMed ID: 36562289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenomic landscape of 5-hydroxymethylcytosine reveals its transcriptional regulation of lncRNAs in colorectal cancer.
    Hu H; Shu M; He L; Yu X; Liu X; Lu Y; Chen Y; Miao X; Chen X
    Br J Cancer; 2017 Feb; 116(5):658-668. PubMed ID: 28141796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease.
    Dong C; Chen J; Zheng J; Liang Y; Yu T; Liu Y; Gao F; Long J; Chen H; Zhu Q; He Z; Hu S; He C; Lin J; Tang Y; Zhu H
    Clin Epigenetics; 2020 Jan; 12(1):17. PubMed ID: 31964422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stacking-ac4C: an ensemble model using mixed features for identifying n4-acetylcytidine in mRNA.
    Lou LL; Qiu WR; Liu Z; Xu ZC; Xiao X; Huang SF
    Front Immunol; 2023; 14():1267755. PubMed ID: 38094296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver.
    Lin IH; Chen YF; Hsu MT
    PLoS One; 2017; 12(1):e0170779. PubMed ID: 28125731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating 5hmC and gene expression data to infer regulatory mechanisms.
    Mitrea C; Wijesinghe P; Dyson G; Kruger A; Ruden DM; Draghici S; Bollig-Fischer A
    Bioinformatics; 2018 May; 34(9):1441-1447. PubMed ID: 29220513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The level and clinical significance of 5-hydroxymethylcytosine in oral squamous cell carcinoma: An immunohistochemical study in 95 patients.
    Wang Y; Hu H; Wang Q; Li Z; Zhu Y; Zhang W; Wang Y; Jiang H; Cheng J
    Pathol Res Pract; 2017 Aug; 213(8):969-974. PubMed ID: 28554766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 5hmC-MIQuant: Ultrasensitive Quantitative Detection of 5-Hydroxymethylcytosine in Low-Input Cell-Free DNA Samples.
    Yuan F; Yu Y; Zhou YL; Zhang XX
    Anal Chem; 2020 Jan; 92(1):1605-1610. PubMed ID: 31829563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. StackDPP: a stacking ensemble based DNA-binding protein prediction model.
    Ahmed SH; Bose DB; Khandoker R; Rahman MS
    BMC Bioinformatics; 2024 Mar; 25(1):111. PubMed ID: 38486135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens.
    Charoenkwan P; Schaduangrat N; Shoombuatong W
    BMC Bioinformatics; 2023 Jul; 24(1):301. PubMed ID: 37507654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree.
    Liang Y; Zhang S; Qiao H; Cheng Y
    Math Biosci Eng; 2021 Oct; 18(6):8797-8814. PubMed ID: 34814323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.