These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34562815)

  • 1. High-resolution imaging and fast number estimation of suspended particles using dewetted polymer microlenses in a microfluidic channel.
    Mishra S; Kulkarni MM; Verma A
    Micron; 2021 Dec; 151():103148. PubMed ID: 34562815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified inverted selective plane illumination microscopy for sub-micrometer imaging resolution in polydimethylsiloxane soft lithography devices.
    Xu T; Lim YJ; Zheng Y; Jung M; Gaus K; Gardiner EE; Lee WM
    Lab Chip; 2020 Oct; 20(21):3960-3969. PubMed ID: 32940306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution cost-effective compact portable inverted light microscope.
    Purwar P; Han S; Lee Y; Saha B; Sandhan T; Lee J
    J Microsc; 2019 Mar; 273(3):199-209. PubMed ID: 30561003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focusing of sub-micrometer particles in microfluidic devices.
    Zhang T; Hong ZY; Tang SY; Li W; Inglis DW; Hosokawa Y; Yalikun Y; Li M
    Lab Chip; 2020 Jan; 20(1):35-53. PubMed ID: 31720655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical defect guided dewetting of ultrathin films to fabricate nanoscale patterns.
    Das A; Bolleddu R; Singh AK; Bandyopadhyay D
    Nanotechnology; 2021 May; 32(19):195303. PubMed ID: 33535200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays.
    Zhang T; Shen Y; Kiya R; Anggraini D; Tang T; Uno H; Okano K; Tanaka Y; Hosokawa Y; Li M; Yalikun Y
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical detection and sizing of single nanoparticles using continuous wetting films.
    Hennequin Y; Allier CP; McLeod E; Mudanyali O; Migliozzi D; Ozcan A; Dinten JM
    ACS Nano; 2013 Sep; 7(9):7601-9. PubMed ID: 23889001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles.
    Vlad A; Huynen I; Melinte S
    Nanotechnology; 2012 Jul; 23(28):285708. PubMed ID: 22728662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Fabrication of Microscale, Thin-Film Silicon Solid Immersion Lenses for Mid-Infrared Application.
    Lee GJ; Kim HM; Song YM
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32120857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of High-Density Brush of Liquid Crystalline Polymer Block Associated with Dewetting Process on Amorphous Polymer Film.
    Mukai K; Hara M; Nagano S; Seki T
    Langmuir; 2019 Aug; 35(32):10397-10404. PubMed ID: 31317747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Inertial Focusing of Micrometer- and Sub-Micrometer-Sized Particles Separation.
    Wang L; Dandy DS
    Adv Sci (Weinh); 2017 Oct; 4(10):1700153. PubMed ID: 29051857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatic control in coextruded layered polymer microlenses.
    Crescimanno M; Oder TN; Andrews JH; Zhou C; Petrus JB; Merlo C; Bagheri C; Hetzel C; Tancabel J; Singer KD; Baer E
    Opt Express; 2014 Dec; 22(24):29668-78. PubMed ID: 25606898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological evolution in dewetting polystyrene/polyhedral oligomeric silsesquioxane thin film bilayers.
    Paul R; Karabiyik U; Swift MC; Hottle JR; Esker AR
    Langmuir; 2008 May; 24(9):4676-84. PubMed ID: 18399686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.